UNIVERSIDAD NACIONAL AGRARIA DE LA SELVA

FACULTAD DE RECURSOS NATURALES RENOVABLES

Departamento Académico de Ciencias de los Recursos Naturales Renovables

"ESTABLECIMIENTO Y EVALUACION DE PARCELAS PERMANENTES
DE MEDICION EN EL BOSQUE RESERVADO DE LA UNIVERSIDAD
NACIONAL AGRARIA DE LA SELVA, TINGO MARIA"

TESIS

PARA OPTAR EL TITULO DE:

INGENIERO EN RECURSOS NATURALES RENOVABLES
MENCION: FORESTALES

DAVID BLAS JAIMES

Promoción 2002-I

Tingo María - Perú

2004

F10

B57

Blas Jaimes, D.

Establecimiento y evaluación de parcelas permanentes de medición en el Bosque Reservado de la Universidad Nacional Agraria de la Selva, Tingo María.— Tingo María 2004

17 cuadros; 15 fig. 2 mapas.; 30 cm.

Ingeniero Recursista. Universidad Nacional Agraria de la Selva, Tingo María (Perú). Facultad de Recursos Naturales y Renovables

BOSQUES / EVALUACIÓN / MEDICIÓN / COMPOSICIÓN BOTÁNICA / SANIDAD DE LOS BOSQUES / CONDICIÓN DE LA PLANTA / LEONCIO PRADO / HUÁNUCO

UNIVERSIDAD NACIONAL AGRARIA DE LA SELVA

FACULTAD DE RECURSOS NATURALES RENOVABLES

ESTABLECIMIENTO Y EVALUACIÓN DE PARCELAS PERMANENTES DE MEDICIÓN EN EL BOSQUE RESERVADO DE LA UNIVERSIDAD NACIONAL AGRARIA DE LA SELVA, TINGO MARÍA.

TESIS PARA OPTAR EL TÍTULO DE:

INGENIERO EN RECURSOS NATURALES RENOVABLES

MENCIÓN FORESTALES

PRESENTADO POR:

DAVID BLAS JAIMES

SUSTENTADA Y APROBADA ANTE EL SIGUIENTE JURADO:

Ing. MSc. YTAVCLERH YARGAS CLEMENTE

Presidente

Ing. MSc. LADISLAO\RUÍZ RENGIFO


Vòcal '

GARA PALOMINO

Miembro

Ing. MSc. VICENTE POCOMUCHA POMA

Asesor

UNIVERSIDAD NACIONAL AGRARIA DE LA SELVA Tingo María – Perú

FACULTAD DE RECURSOS NATURALES RENOVABLES

ACTA DE SUSTENTACION DE TESIS

Los que suscriben, Miembros del Jurado de Tesis, reunidos con fecha 20 de diciembre del 2004, a horas 06:00 p.m. en la Sala de Conferencias de la facultad de Recursos Naturales Renovables, para calificar la tesis titulada:

"Establecimiento y Evaluación de Parcelas Permanentes de Medición en el Bosque Reservado de la Universidad Nacional Agraria de la Selva, Tingo María"

Presentado por el Bachiller: **DAVID BLAS JAIMES**, después de haber escuchado la sustentación y las respuestas a las interrogantes formuladas por el Jurado, se declara aprobado con el calificativo de "BUENO".

En consecuencia el sustentante queda apto para optar el Título de INGENIERO en RECURSOS NATURALES RENOVABLES, mención FORESTALES, que será aprobado por el Consejo de Facultad, tramitándolo al Consejo Universitario para la otorgación del título de conformidad con lo establecido en el Art. 81 inc. m) del Estatuto de la Universidad Nacional Agraria de la Selva.

Tingo María, 28 de abril del 2005

YTAVCLERH VARGAS CLEMENTE, Ing. MS

Presidente

LADISLAO RUIZ RENGIFO, Ing. MSc.

Joes I

PROFESTERGARA PALOMINO, Ing.

Miembro

VICENTE POCOMUCHA POMA, Ing.MSc.

Asesor

DEDICATORIA

A mi madre:

Aquilina Jaimes Meza

Por su amor inmenso, apoyo constante y sabios

Consejos.

A mi padre:

Hégel Roberto Céspedes Revelo

Por sus consejos sabios y esfuerzo invalorable

Para hacer realidad mi profesión

A mi señora esposa:

Neber Diamela Ponce Sobrados

Por su amor y confianza

A mi hijo:

Diego David Blas Ponce

Por constituirse en mi fuerza de voluntad

A mis Hermanos:

Ricardo, Juan, Flori, Héctor, Yolanda, Rebeca, José

Por su apoyo moral y amor fraternal

AGRADECIMIENTO

- A la Universidad Nacional Agraria de la Selva, por haberme forjado como profesional.
- A todos mis profesores de la Facultad de Recursos Naturales Renovables, quienes contribuyeron en mi formación académica.
- Al Ingeniero M.Sc. Vicente Pocomucha Poma, patrocinador del presente trabajo de investigación, por su orientación profesional, durante el trabajo de campo.
- Al Ingeniero M.Sc. Casiano Aguirre Escalante, co-patrocinador de la tesis, por su orientación en la tabulación de la información y la redacción.
- Al Ingeniero Warren Ríos García, por su orientación profesional durante el trabajo de campo.
- A los Ingenieros Alberto Fonseca Díaz y Jenri Ruiz Gonzáles por su orientación y apoyo en el trabajo de campo y redacción.
- Al Ingeniero Luis Valdivia Espinosa por su apoyo incondicional en la revisión de la tesis.
- Al Bachiller Raúl Gutiérrez por su apoyo en el trabajo de campo.
- Al Señor Otto Tuesta Reátegui por su apoyo durante el trabajo de campo.
- A mis compañeros y amigos, y a todos aquellos que colaboraron en la instalación y evaluación del trabajo, así como en la culminación de este documento.

ÍNDICE GENERAL

· · · · · · · · · · · · · · · · · · ·	Pagina
I. INTRODUCCIÓN	01
II. REVISIÓN DE LITERATURA	03
2.1. Generalidades del Bosque Reservado de la Universidad	
Nacional Agraria de la Selva (BRUNAS)	03
2.1.1. Aspecto legal	03
2.1.2. Estudios de biodiversidad en la zona	03
2.2. Bosques primarios	04
2.3. Regeneración natural	05
2.4. Parcelas permanentes de medición (PPM)	06
2.4.1. Forma y tamaño de las parcelas	07
2.4.2. Tamaño y ubicación de la muestra	07
2.4.3. Distribución de las parcelas	08
2.5. Variables dasonómicas	09
2.5.1. Diámetro del fuste	09
2.5.1.1. Medición del área basal	10
2.5.1.2. Importancia del área basal	10
2.5.2. Crecimiento	11
2.5.3. Incremento	12
2.5.4. Mortalidad	13
2.5.5. Reclutamiento	
2.6. Variables ecológicas	
2.6.1. Calidad de fuste	15
2.6.2. Forma de la copa	15

2.6.3. Iluminación de copa	15
2.6.4. Presencia de lianas	16
III. MATERIALES Y MÉTODOS	18
3.1. Ubicación del área de investigación	18
3.1.1. Zona de vida	19
3.1.2. Condiciones climáticas	19
3.1.3. Fisiografía e hidrografía	19
3.1.4. Vegetación	19
3.2. Materiales	20
3.3. Metodología	20
3.3.1. Ubicación del área e instalación de las PPM	21
3.3.2. Inventario de las PPM	21
3.3.3. Evaluación de las variables ecológicas	22
3.3.4. Procesamiento de datos	22
IV. RESULTADOS	24
4.1. Composición florística de las PPM	24
4.2. Crecimiento en diámetro	28
4.2.1. Crecimiento anual por especie	28
4.2.2. Área basal por PPM	33
4.3. Incremento medio anual (IMA %)	33
4.4. Mortalidad y reclutamiento	34
4.5. Variables ecológicas	35
V. DISCUSIÓN	38
5.1. Composición florística	38

5.2. Crecimiento en diámetro	38
5.3. Incremento medio anual (IMA %)	40
5.4. Mortalidad y reclutamiento	40
5.5. Variables ecológicas	41
5.5.1. Calidad de fuste	41
5.5.2. Forma de copa	42
5.5.3. Iluminación de copa	42
5.5.4. Presencia de lianas	43
VI. CONCLUSIONES	45
VII. RECOMENDACIONES	46
VIII. ABSTRACT	47
IX. REFERENCIAS BIBLIOGRÁFICAS	49
X. ANEXOS	53
Anexo 1: Cuadros.	

- Datos meteorológicos correspondientes al periodo de evaluación del trabajo (2002) (Cdro. 5).
- Información del total de árboles y especies por PPM (Cdro. 6).
- Claves para la calificación de las variables ecológicas en las PPM
 Cdro. 7,8,9 y 10).
- Información de especies registradas en las PPM (Cdro. 11).
- Información del incremento medio anual (IMA %) de las PPM (Cdro
 12).
- Información de la mortalidad y reclutamiento en las PPM (Cdro. 13).

- Datos porcentuales de las variables ecológicas registradas en las PPM (Cdro. 14, 15, 16 y 17).

Anexo 2: Figuras.

- Distribución y dimensiones de las PPM y sub parcelas (Fig. 8).
- Diseño de la codificación de los árboles (Fig. 9).
- Fotografía de codificación del árbol individual (Fig. 10).
- Fotografía de la evaluación de las especies forestales (Fig. 11).
- Formato para la evaluación de campo en las PPM (Fig. 12,13 y 14).
- Número total de árboles y especies por PPM (Fig. 15).

Anexo 3: Otros.

- Mapa de ubicación de las Parcelas Permanentes de Medición.
- Mapa de Distribución de las Parcelas Permanentes de Medición.
- Certificado de identificación de las especies forestales
- Informe de datos Climatológicos de la Estación Principal (CP.) "Tingo
 María".

ÍNDICE DE CUADROS Y FIGURAS

CUADROS:

	Pág	ina
01.	Coordenadas UTM de las PPM	18
02.	Composición florística de las PPM	24
03.	Promedio del crecimiento anual de diámetro (cm/año) por PPM	28
04.	Promedio del crecimiento anual en diámetro por especie	29
FIG	SURAS:	
01.	Promedio del área basal por PPM	33
02.	Incremento medio anual por PPM	34
03.	Mortalidad y reclutamiento por PPM	34
04.	Calidad de fuste por PPM	35
05.	Forma de copa por PPM	36
06.	Iluminación de copa por PPM	37
07	Presencia de lianas por PPM	37

RESUMEN

El presente trabajo de investigación se realizó de enero a diciembre del 2002, Establecimiento y evaluación de parcelas permanentes de medición en el Bosque Reservado de la Universidad Nacional Agraria de la Selva (BRUNAS), Tingo María. Los objetivos fueron, conocer la composición florística; evaluar el crecimiento, incremento medio anual (IMA), reclutamiento y mortalidad; así como la calidad de fuste, forma de copa, iluminación de la copa y presencia de lianas de las parcelas permanentes de medición (PPM) establecidos en el BRUNAS.

Se establecieron 4 PPM, con dimensiones de 100 m x 100 m, con 25 subparcelas de 20 m x 20 m dentro de cada PPM. Las variables evaluadas fueron: dasonómicas (dap) y ecológicas, siguiendo la metodología propuesta por PINNELO (2000) y CAMACHO (2000).

Como resultados se obtuvieron: una composición florística de 97 especies con 67 géneros distribuidos en 32 familias, una tasa de crecimiento en diámetro de 0.38 cm/año La especie que presentó el mayor crecimiento fue *Vitex trifolia*, con 1.91 cm/año, mientras que las especies *Licania emarginata y Parkia pendula*, presentaron los crecimientos mas bajos con 0.032 cm/año. El área basal fue de 25.62 m²/ha/año; mientras que el IMA fue de 2.898%; presento una mortalidad de 0.41%. y un reclutamiento de 1.85%.

Las variables ecológicas, como: la calidad de fuste, está dado por la característica comercial en el futuro, con una media de 84.23%; la forma de copa (medio círculo) fue la más representativa con 47.22%, mientras que la

iluminación de copa (oblicua) alcanzó un 35.55% y la presencia de lianas (sin lianas en el fuste) alcanzó 64.24%.

I. INTRODUCCIÓN

Actualmente los bosques de la zona del Alto Huallaga, se encuentran amenazados por la sobre explotación, consecuentemente provocan deterioro y fragmentación del hábitat, a ello se suma la ausencia de métodos prácticos y científicos, que permitan, con mayor certeza conocer la dinámica del conjunto de poblaciones y validar el manejo, la valoración forestal, los sistemas silviculturales, la regeneración natural, el comportamiento dasométrico y ecológico de las especies forestales; toda vez que los bosques tropicales son sumamente complejos, tanto en su estructura como en su dinámica.

En ese sentido, las parcelas permanentes de medición (PPM) representan un sistema ágil y ordenado de toma de datos de campo, aplicables a bosques intervenidos, como los bosques primarios sin intervenir. A partir de su implementación y estudio se puede obtener un control preciso de los procesos naturales, que facilita estudiar la dinámica de las poblaciones presentes y conocer el comportamiento ecológico de las diferentes especies forestales tropicales.

Bajo este contexto, la utilidad de la investigación en PPM permite acopiar, sistematizar y validar como modelos técnicos y científicos, necesarios

e indispensables para diseñar planes de manejo forestal sostenible, exigidos en la Ley N° 27308, Ley Forestal y de Fauna Silvestre, su Reglamento y el Decreto Supremo N° 014-2001-AG. Además una condición para poder ingresar a la certificación forestal voluntaria.

Los objetivos planteados en el presente trabajo de investigación fueron:

- Conocer la composición florística de las parcelas permanentes de medición (PPM) establecidas en el Bosque Reservado de la Universidad Nacional Agraria de la Selva (BRUNAS).
- Evaluar el crecimiento, incremento medio anual (IMA), reclutamiento y mortalidad dentro de las PPM.
- Evaluación de las variables ecológicas de los árboles como: calidad de fuste, forma de copa, iluminación de la copa y presencia de lianas.

II. REVISIÓN DE LITERATURA

2.1. Generalidades del Bosque Reservado de la Universidad Nacional Agraria de la Selva (BRUNAS)

2.1.1. Aspecto Legal

El BRUNAS fue creado mediante Resolución Nº 1502 – 56 – UNASTM de fecha 31 de diciembre de 1971, con la finalidad de preservar en conjunto los recursos naturales existentes en dicha área. Formalmente, consta con título de propiedad Nº 05788 – 95 otorgado por la Municipalidad Provincial de Leoncio Prado y asentado en los registros Públicos de Tingo María; abarca una extensión aproximada de 260 has (CÁRDENAS, 1995).

2.1.2. Estudios de biodiversidad en la zona

CÁRDENAS (1995), en un inventario realizado en el BRUNAS, determinó la existencia de 32 familias, 70 géneros, 111 especies y 1,693 árboles; de los cuales 1,124 árboles corresponden al bosque de producción forestal y 569 árboles al bosque de protección. De igual forma, indica que las cinco especies más abundantes en el bosque de producción forestal son: Senefeldera macrophylla (184 individuos) Pseudolmedia lavets (47 individuos) Hevea guianensis (36 individuos), Pouroma minor (34 individuos) y Cecropia

engleriana (32 individuos); en un muestreo de 3 has. El mayor volumen y mayor número de individuos están entre 10 – 39 cm de d.a.p.

Dourojeanni (1975), citado por BUENDÍA (1996), manifiesta que en los reconocimientos botánicos realizados en el Parque Nacional Tingo María, le han permitido identificar 96 especies arbóreas, 31 arbustos y 17 especies de palmeras, mientras que BUENDÍA (1996), registró 41 especies arbóreas, 12 especies de arbustos y 06 especies de palmeras, lo cual concluyó que la riqueza biológica florística hallada en el área total de estudio fue de 22 especies arbóreas, 9 arbustivos, 15 herbáceos y una de palmeras haciendo un total de 47 familias, 72 géneros, 81 especies para un total de 906 individuos.

2.2. Bosques primarios

Se considera bosque primario a aquel que ha existido sin perturbaciones humanas significativas u otros disturbios durante periodos que exceden el largo normal de la vida de los árboles maduros (de 60 a 80 años según FAO, citado por WADSWORTH (2000). En tales bosques relativamente estables, se desarrollan relaciones funcionales de preferencia, tolerancia, capacidad e interdependencia entre organismos, las cuales no se evidencian de otro modo. Tales bosques son autosostenibles y poseen valor ecológico y económico para la sociedad.

La cantidad de los árboles por unidad de terreno que han alcanzado un cierto d.a.p, constituye una medida significativa de la densidad forestal. En los bosques primarios tropicales húmedos, la cantidad de árboles

por unidad de terreno es bastante uniforme. La cantidad de árboles con d.a.p, de 10 cm a más, por unidad de área varía con el sitio. Para los bosques estacionales, el promedio es de casi 500 árboles/ha; para los bosques submontanos en promedio es de hasta 1000 árboles/ha.

En bosques primarios, la mayoría de los árboles son pequeños, un muestreo extensivo de los bosques del amazonas reveló que casi la mitad de los árboles se ubican en la clase más baja. A mayores latitudes esta proporción es menor (WADSWORTH, 2000).

2.3. Regeneración natural

Se comprende como regeneración natural a todos aquellos individuos descendientes de los árboles del techo general del bosque en un rango de plantas de 10 cm de dap, considerándolo hasta 3 categorías de tamaño según Finol (1971), citado por MARCOS (1996).

Las condiciones locales de luz ejercen una influencia determinante sobre el establecimiento y el desarrollo de la regeneración. Las especies notoriamente esciófitas tienen la capacidad de establecerse en bosques densos ya durante la fase de sombra y de permanecer en estado latente por tiempo prolongado. Las especies oportunistas también consiguen establecerse, pero las plantas desaparecen a más tardar después de unos años. La regeneración exitosa de las pioneras heliófitas esta limitada en primer término a superficies de campo abierto o bien a los claros de mayores dimensiones en el bosque (LAMPRECHT, 1990).

El éxito del manejo de un bosque tropical depende en gran parte de la existencia de suficiente regeneración natural que asegure la sostenibilidad del recurso a través del tiempo. Los procesos que ocurren al caer un árbol son especialmente importantes para entender cambios en la estructura y dinámica de la comunidad arbórea, sobre todo porque la diversidad de tamaños y formas de estas aperturas producen una diversidad de micro ambientes en luz, temperatura, humedad e intensidad, los vientos crean condiciones favorables para la regeneración natural de especies arbóreas, según Denslow (1980) y Brokaw (1985), citado por SAENZ *et al.* (1998).

2.4. Parcelas permanentes de medición (PPM)

Una PPM es una superficie de terreno debidamente delimitada y ubicada geográficamente en donde se registran datos ecológicas y dasométricos con la finalidad de obtener resultados sobre incremento, mortalidad, reclutamiento (ingresos) u otro tipo de información previamente determinada (PINELO, 2000).

El establecimiento de PPM y los datos consiguientes sobre la vegetación, son elementos necesarios para la elaboración de modelos de crecimiento y rendimiento (CLAROS y LICONA, 1995).

Las PPM son espacios de investigación a largo plazo permanentemente demarcado y periódicamente medido. La instalación y monitoreo de un conjunto de PPM conllevan varios objetivos los cuales deben ser claramente definidos antes de indicar el estudio (CAMACHO, 2000).

La primera medición debe hacerse efectiva en el momento de la instalación de la parcela y antes del aprovechamiento. La segunda, a finales del mismo año y después de haberse realizado el aprovechamiento total o parcial del área de aprovechamiento (BOLFOR, 1990).

2.4.1. Forma y tamaño de las parcelas

Es recomendable que una PPM en el bosque tropical tenga forma cuadrada debido al menor perímetro con respecto a parcelas rectangulares. Lo que reduce el costo de demarcación y minimiza el riesgo de cometer errores de medición en árboles que se encuentran al borde de las parcelas. Igualmente las PPM en bosques tropicales deben tener el tamaño mínimo de una hectárea con la finalidad de abarcar mayor variabilidad posible y facilitar el análisis estadístico de la información, según Synnott (1991) y Alder (1980), citado por PINELO (2000).

2.4.2. Tamaño y ubicación de la muestra

Según CAMACHO (2000), el tamaño y la ubicación de un conjunto de PPM parten del análisis de cierta información básica:

- Variabilidad de las condiciones abióticas del sitio: altitud, topografía,
 exposición de pendientes y suelo.
- Tipos de bosques en términos de composición florística, densidad de individuos, área basal, volúmenes totales y comerciales.
- Tipo de estudio conducido: descriptivo o ensayo formal.
- Tamaño de la superficie boscosa.
- Recursos disponibles.

La información de los dos primeros puntos, permite la identificación de estratos en el área de estudio. Los últimos proporcionan la base para determinar el número para cada estrato.

El tamaño óptimo del área efectiva de la parcela depende de varios factores:

- El tipo de bosque (primario, secundario con o sin intervención).
- La riqueza de especies.
- El conjunto de diámetros a considerar en la muestra
- El tamaño máximo de los individuos y su densidad.
- El tamaño de claros en el rodal.
- Los objetivos del estudio.
- La precisión requerida en función de los costos de instalación y monitoreo.

2.4.3. Distribución de parcelas

Las PPM se pueden distribuir al azar o en forma sistemática, pero siempre basadas en la estratificación; es decir en condiciones similares (estratos) para posteriormente comparar y unir los resultados obtenidos en cada una de ellas. No obstante todas las áreas deben tener la misma probabilidad de ser incluidas en una parcela.

Cuando el objetivo es estudiar el comportamiento de ciertas especies comerciales, la aleatorización debe tomar en cuenta las áreas con mayor abundancia de dichas especies, pues si se incluye todo el área cabe la

posibilidad de que las parcelas se instalen en zonas en donde es mínima la presencia de las especies de interés; para ello se tiene dos formas de distribución de las parcelas permanentes de medición: al azar y sistemático (PINELO, 2000).

2.5. Variables dasonómicas

De acuerdo a Sinnott (1991), citado por LEAÑO y SARAVIA (1998), recomienda que en un programa de parcelas permanentes, es necesario contar con los siguientes datos básicos: variables dasonómicas (diámetro, altura) y ecológicas (calidad de fuste, iluminación de copa, forma de copa y presencia de lianas).

2.5.1. Diámetro del fuste

Los diámetros pueden medirse razonablemente al milímetro completo. De dos formas, las mediciones de clase de un centímetro usualmente no serán suficientemente precisas para los cálculos de incrementos y precisiones requeridos.

La medición de diámetro es la operación más corriente y sencilla de mensura. En árboles en pie, la altura normal del diámetro representativo del árbol es 1.3 m desde el nivel del suelo, medidos sobre la pendiente por la altura de medición, se denomina diámetro a la altura del pecho (PRODAN *et.al.*, 1997).

El diámetro del fuste del árbol se puede medir con cinta diamétrica de 2, 5 ó 10 m de longitud, preferiblemente con una cinta de metal (porque no estira) o de fibra de vidrio; la medida se toma al milímetro inferior, ya que se considera un error sistemático que puede ser ignorado Synnott (1991), citado por PINELO (2000). Si se requiere de mayor precisión, podría tomarse la circunferencia a 1.30 m y posteriormente transformarlo a diámetro, dividiendo por "π", siempre y cuando todas las mediciones se tomen de esa forma (PINELO, 2000).

2.5.1.1. Medición del área basal

Una de las dimensiones empleadas con mayor frecuencia para caracterizar el estado de desarrollo de un árbol es el área basal que se define como el área de una sección transversal del fuste a 1.30 m de altura sobre el suelo. El área basal, por su forma irregular nunca se mide en forma directa, sino que se desvía de la medición del diámetro o perímetro (PRODAN *et al.*, 1997).

2.5.1.2. Importancia del área basal

RODRIGUEZ (1985) indica que el área basal posee gran importancia para cubicar un bosque, así mismo es importante para ver la biomasa del área, es imprescindible conocer tal sección, ya sea de un árbol individualmente o de una hectárea, teniendo en este último caso, el área basal por hectárea.

El área basal, es el indicador de la fertilidad natural del sitio o el que permite medir la capacidad productiva del bosque. En un bosque virgen tiene un promedio estimado de 38 m²/ha (ZOUDRE, 1998).

El área basal del bosque es un buen indicador de la fertilidad natural del sitio en el bosque primario; sin embargo, los valores encontrados en las distintas regiones tropicales muestran una notable constancia, habiéndose estimado que el área basal se encuentra entre los 32 y 37 m²/ha. Estos valores deberían emplearse para evaluar los niveles de deterioro que se producen al intervenir el bosque primario y para estimar su velocidad de recuperación (LOMBARDI, s/f).

2.5.2. Crecimiento

El crecimiento es el incremento gradual de un organismo, población u objeto en un determinado período de tiempo. El crecimiento acumulado hasta una edad determinada representa el rendimiento a esa edad.

La estimación del crecimiento es una etapa esencial en el manejo forestal. El concepto básico de recurso renovable se deriva de la propiedad de crecimiento y cualquier planificación encierra el concepto de predicción de crecimiento.

El crecimiento de los árboles individuales está influido por sus características genéticas y su interrelación con el medio ambiente, factores climáticos y de suelo y características topográficas, cuya suma representa la calidad de sitio. Además de estos factores, la competencia es un factor muy importante y el más controlable a través del manejo silvicultural. Por la disminución del número de árboles en general es difícil determinar el crecimiento de valores para un período más largo (PRODAN et al., 1997).

Un resumen del crecimiento en d.a.p durante 25 años de más de 500 árboles en un bosque húmedo secundario subtropical de Puerto Rico arrojó un promedio de 0,12 cm/año y en extremos de 0,04 y 0,5, según Weaver (1979), citado por WADSWORTH (2000). Aún los árboles dominantes y codominantes crecían sólo 0,4 cm/año aproximadamente (WADSWORTH, 2000).

En los bosques pluviales de la India, las tasas de crecimiento son de solo 0.3 cm/año aproximadamente. En los bosques pluviales de Nigeria árboles del estrato superior (*Khaya grandifoliola*, *Pycnanthus angolensis* y *T. scleroxylon*) presentaron tasas de crecimiento de 0.7 cm/año. Así mismo en el antiguo Zaire, un registro de siete años demostró que el diámetro de *Macaranga*, *Musanga* y *Ricinodendron* aumenta más de 2.0 cm/año. Excepcionalmente árboles expuestos en los bosques húmedos tropicales de Puerto Rico pueden crecer a una tasa de 2.5 cm/año de diámetro (WADSWORTH, 2000).

2.5.3. incremento

Es el crecimiento determinado por dos mediciones: una al inicio del periodo y otra al final, según Keplac (1976), Finegan (1994), Gálvez (1996),

citado por PINELO (2000). Aunque en este documento se hace referencia al incremento medio anual (incremento promedio de los árboles en un tiempo determinado).

En investigaciones forestales, es muy común el uso de incremento diamétrico o absoluto, aunque para manejo forestal, los datos de incremento o mediano anual en área basal, son de mayor utilidad para determinar la sostenibilidad del recurso. Por medio de la tasa de incremento, y suponiendo la tasa de mortalidad y reclutamiento anual, se podría determinar el porcentaje máximo de área basal potencial por aprovechar (PINELO, 2000).

Debido a distribución sesgada y coeficiente de variación grande de los incrementos, el incremento promedio no representa, de ninguna manera, el crecimiento de la población estudiada. El promedio sobreestima el crecimiento de la mayoría de los árboles, y a la vez subestima el crecimiento de los mejores árboles del rodal, aquellos pocos que van creciendo rápido. Así, aunque no podemos hacer afirmaciones exactas sobre el incremento del rodal entero o la población entera, si podríamos hacerlas sobre grupos de árboles dentro de cada rodal o población individual (FINEGAN, 1997).

2.5.4. Mortalidad

La importancia de registro sobre mortalidad en estudios sobre dinámica del bosque, ayuda a interpretar el comportamiento natural del bosque y a compararlo con lo que ocurre en los otros tratamientos. De esta forma, se puede determinar la influencia de dichas intervenciones en la mortalidad.

La tasa de crecimiento, tasa de mortalidad, densidad y otras son significativas solamente a nivel de grupo. Si se quiere comprender en su totalidad la ecología de una especie, se deben estudiar y medir las características de ese grupo de población (ODUM, 1996).

Una curva altamente cóncava se produce cuando la mortalidad es alta durante las etapas jóvenes (ODUM, 1983).

Swaine *et al.* (1987), citado por FINEGAN (1997) establecen que a nivel de rodal entero, las tasas anuales de mortalidad para bosques húmedos tropicales oscilan entre (aproximadamente) un 0.5% y un 2.5%. El bosque muy húmedo de la selva, presentó algunas de las tasas anuales de mortalidad más altas que han sido obtenidas hasta la fecha para bosques húmedos tropicales: entre 1.8% y 2.25%.

2.5.5. Reclutamiento

Se consideran como reclutas (nuevos) a los individuos que en una medición alcanzan el diámetro a la altura del pecho (DAP) mínimo establecido en el experimento (p.ej. árboles > 5 ó 10 cm DAP). Se puede calcular la tasa de reclutamiento y el número de reclutas por hectárea. Esta última información, sin embargo, es necesario manejar con cautela, ya que es un dato relativo que depende de la densidad del bosque donde se establece el experimento (PINELO, 2000).

La determinación del reclutamiento y la mortalidad nos permite, por supuesto, dar seguimiento a los cambios del tamaño poblacional para cada especie presente en la vegetación (FINEGAN, 1997).

2.6. Variables ecológicas

2.6.1. Calidad de fuste

Se refiere a un índice de calidad y cantidad de trozas aserrables que se pueden obtener de un árbol. Es de gran importancia durante el madereo y la utilización en inventarios madereros. Raras veces se incluye como factor a ser anotado en estudios de parcelas permanentes y estudios de tasa de crecimiento. Pero de todos modos, la mala forma del fuste ciertamente está correlacionada con la futura producción de madera en varias categorías y puede verse afectada por varias prácticas silviculturales (PINELO, 2000).

2.6.2. Forma de copa

Dentro de la población de cualquier especie, el aspecto o calidad de la copa en relación con el tamaño y estado de desarrollo del árbol está correlacionado con el incremento y el incremento potencial, lo que refleja "como índice de calidad, siendo su valor dependiente de la historia pasada y que tal vez indica su potencial futuro" (PINELO, 2000).

2.6.3. Iluminación de copa

La luz es un factor ecológico de extraordinaria importancia. Según la forma en que se utiliza y las relaciones a que da lugar (MARGALEF, 1986).

La iluminación que recibe la copa de los árboles es una de las variables más importantes en el estudio de crecimiento, pues existe una alta correlación entre el nivel de iluminación y la tasa de crecimiento de los árboles (CAMACHO, 2000).

Los árboles del bosque difieren en cuanto a su nivel de tolerancia, la capacidad de sobrevivir y crecer en condiciones de baja intensidad de luz. Muchos árboles del dosel que viven completamente expuestos en la madurez, en un principio aguantaron años de sombra intensa, hasta que ocurrieron aperturas adecuadas para estimular su crecimiento (WADSWORTH, 2000).

Según Horn (1971), citado por WADSWORTH (2000), indicó que sólo se necesita el 20% de luz plena para el crecimiento de los árboles.

Excepcionalmente, los árboles expuestos en los húmedos subtropicales de Puerto Rico pueden crecer a una tasa de 2.5 cm/año de diámetro Wadsworth (1958), citado por WADSWORTH (2000). Sin embargo, el promedio de crecimiento diamétrico de los árboles en bosques primarios es mucho menor que estos extremos (WADSWORTH, 2000).

2.6.4. Presencia de lianas

La infestación por lianas y trepadoras tiene serios efectos en el incremento, forma de los árboles, sobre vivencia y producción futura de madera. Es un factor al que se debe dar seguimiento si la información se usa para modelos detallados de crecimiento y rendimiento.

El establecimiento de parcelas permanentes de medición (PPM) y los datos consiguientes sobre la vegetación arbórea son elementos necesarios para la elaboración de modelos de crecimiento y rendimiento (CLAROS y LICONA, 1999).

III. MATERIALES Y MÉTODOS

3.1. Ubicación del área de investigación

El presente trabajo de investigación se realizó en el periodo (Enero 2002 a Diciembre 2002); en el Bosque Reservado de la Universidad Nacional Agraria de la Selva (BRUNAS), ubicado en la margen derecha del río Huallaga. Políticamente se encuentra ubicado en el distrito de Rupa Rupa, provincia de Leoncio Prado, región Huánuco. Geográficamente se encuentra en las siguientes coordenadas UTM:

Cuadro 1. Coordenadas UTM (Datum WGS 84, UTM/UPS) de las PPM BRUNAS.

PARCELAS -	COORDENADAS	
	Este	Norte
PPM 1	391065	8970746
	391002	8970644
	391073	8970608
	391138	8970708
PPM 2	391430	8970660
	391477	8970759
	391540	8970700
	391494	8970608
PPM 3	391529	8970148
	391616	8970157
	391612	8970033
	391529	8970035
PPM 4	391515	8970254
	391509	8970378
	391599	8970396
	391608	8970265

PPM: Parcela permanente de medición

3.1.1. Zona de vida

De acuerdo al mapa ecológico de zonas de vida del Perú (INRENA 1995), la zona de trabajo se encuentra ubicado, en la formación vegetal de bosque muy húmedo – Premontano Sub Tropical (bmh-PST); y de acuerdo al Mapa Ecológico del Perú ONERN (1976), corresponde a la formación vegetal de bosque muy húmedo sub-tropical (bmh-ST).

3.1.2. Condiciones climáticas

La condiciones climáticas del área de estudio, presenta una temperatura máxima de 29.4 C° y una mínima de 19.2 C°, siendo la temperatura media anual de 23.9 C°. La precipitación promedio anual es 3200 mm, y una humedad relativa de 84 % (anexo 1).

3.1.3. Fisiografía y hidrografía

El BRUNAS presenta una fisiografía predominante de colinas altas (clase 1 y clase 2), con relieve ondulado quebradizo, con pendientes que van de 20 a 80 %, con una hidrografía compleja, presentando quebradas que recorren el área del BRUNAS, las mismas que se drenan al río Huallaga.

3.1.4. Vegetación

La formación boscosa tiene las condiciones favorables para el desarrollo y crecimiento de la vegetación natural, las especies que comunmente predominan en el área en estudio y en toda la zona tenemos:

Senefeldera macrophylla, Calopyllum sp, Inga sp, Guarea sp, Cordia sp, Brosimum sp, Nectandra sp, Ocotea lexiflora, Ormosia sp, Virola sp, Jacaranda sp, Cecropia sp, Claricia racemosa (CARDENAS, 1995).

3.2. Materiales

Para la ubicación de las PPM, se ha requerido de material cartográfico (Carta Nacional). Así mismo, durante la instalación se utilizó una wincha de 30 metros; en el demarcado del área se empleó rafia; para el estaqueado de los vértices de cada parcela se colocaron tubos de PVC de 4" y de 2" con cemento.

Los equipos que se utilizaron para el levantamiento de las parcelas fueron altímetro, GPS y brújula para dar la orientación del diseño de cada PPM.

Para la ubicación y delimitación, se contó además con el apoyo de trocheros, y la identificación de las especies forestales estuvo a cargo del especialista en dendrología de la Facultad de Recursos Naturales Renovables de la Universidad Nacional Agraria de la Selva (UNAS).

3.3. Metodología

El periodo de evaluación en las PPM, se realizó de enero a diciembre del 2002.

3.3.1. Ubicación del área e instalación de las PPM

Para la instalación de las PPM se ubicaron puntos de origen en el bosque, que pasó a formar los vértices de las parcelas. Se seleccionaron cuatro PPM de 1 ha (100 m x 100 m), en forma sistemática, tomando en cuenta las condiciones similares del terreno, (ver anexo 1: plano de ubicación de las PPM), siguiendo la metodología propuesta por PINELO (2000).

Luego se procedió a la delimitación y a dividir las parcelas, en 25 subparcelas de 20 m x 20 m (ver anexo 1: figura 1), siguiendo el mismo procedimiento para las otras 3 parcelas. Para ello se utilizó rafias, quedando de esta manera delimitada la vegetación de una parcela a otra. La metodología utilizada, fue el de PINELO (2000).

3.3.2. Inventario de las PPM

Para la identificación, evaluación dasonómica y ecológica se consideraron a las especies forestales con diámetros mayores a 10 cm de dap. Existentes en las 25 subparcelas de cada PPM, con el asesoramiento de un profesional especializado en dendrología (ver anexo 2). Paralelamente a esta labor se colocó un código a cada árbol, el cual consistió en: número de PPM, número de subparcela y número del árbol. La codificación se realizó en el fuste del árbol a 1.30 m del suelo, pintándolo con una franja alrededor del fuste, para demarcar el diámetro de referencia (ver: figura 1, 2 y 3 del anexo 2) con la finalidad de realizar evaluaciones sucesivas. La metodología utilizada, fue la de PINELO (2000) y CAMACHO (2000).

3.3.3. Evaluación de las variables ecológicas

La evaluación de las características ecológicas de cada individuo existente en cada PPM: consistió en anotar en una tabla de evaluación (ver anexo 2: formato), la calidad de fuste, clase de identidad de fuste, iluminación de copa, forma de copa y lianas presentes en los árboles. La metodología usada, fue el de PINELO (2000) y CAMACHO (2000). Las claves de evaluación utilizadas se muestran en los cuadros del 1 al 4 y figuras 3, 4 y 5 (ver anexo 2).

3.3.4. Procesamiento de datos

Luego de concluir la obtención de información de campo se procesó los datos ecológicos y dasonómicos (ver: anexo 3), utilizando las siguientes fórmulas:

 Incremento medio anual, para determinar este parámetro se utilizó la fórmula propuesta por (WADSWORTH, 2000):

IMA (%) =
$$\frac{(Abu - Abi)/t}{(Abi + Abu)/2} *100$$

Donde:

Ab_u = Área basal registrada en la ultima medición.

Ab_i = Área basal del árbol registrada en la primera medición.

t = intervalo de tiempo transcurrido entre la primera y última medición, expresada en años decimales. - Mortalidad, se utilizó la fórmula de Hall y Bawa (1993), citada por PINELO (2000).

$$M (\%) = 100\{ Ln [N / (N - m)] / t \}$$

Donde:

Ln = logaritmo neperiano

N = número de árboles registrados en la primera mediciónm = número de individuos muertos registrados entre la primeray ultima medición

t = intervalo de tiempo entre la primera y última medición

- Reclutamiento, el reclutamiento de los nuevos individuos que pasan de una clase diamétrica a otra, fue determinada por la fórmula propuesta por Hall y Bawa (1993), citada por PINELO (2000).

$$R(\%) = 100 \{Lg[(N+r)/N]/t\}$$

Donde:

R = tasa de reclutamiento

Lg = logaritmo natural

N = números de árboles registrados en la primera evaluación
 r = número de individuos que ingresaron a la clase diamétrica
 t = intervalo de tiempo entre la primera y ultima evaluación,
 expresado en años decimales.

IV. RESULTADOS

4.1. Composición florística de las PPM

La composición florística de las cuatro PPM evaluadas, donde se encontraron 97 especies distribuidas en 32 familias, más una especie no identificada se presenta en el (Cuadro 2).

Cuadro 2. Composición florística de las PPM del BRUNAS.

Nombre científico	Nombre común	Familia
Annona excellens R. E. Fries.	Anonilla	ANNONACEAE
Aniba perutilis Hemsley	Moena negra	LAURACEAE
Anthodiscus pilosus Ducke.	Chamisa	CARYOCARACEAE
Apeiba membranacea Spruce	Peine de mono	TILIACEAE
Apuleia leiocarpa (I.Vogel)J. F. Macbr.	Ana caspi	MIMOSACEAE
Aspidosperma excelsum Benth.	Remo caspi	APOCYNACEAE
Brosimum acutifolium Hubert.	Manchinga	MORACEAE
Brosinum potabile Ducke.	Tulpay blanco	MORACEAE
Brosimum rubescens Taubert	Palo peruano	MORACEAE
Calycophyllum abovatum (Ducke) Ducke.	Capirona de altura	RUBIACEAE
Caryocar glabrum (Aubl.) Pers.	Almendra	CARYOCARACEAE
Cecropia distachya Hubert.	Loro cetico	CECROPIACEAE
Cecropia sciadophylla Mart.	Cetico cedofila	CECROPIACEAE
Cedrelinga cateniformis (Ducke) Ducke.	Tornillo	MIMOSACEAE
Cinchona humboltiana Lamb.	Cinchona humbolt	RUBIACEAE
	Annona excellens R. E. Fries. Aniba perutilis Hemsley Anthodiscus pilosus Ducke. Apeiba membranacea Spruce Apuleia leiocarpa (I.Vogel)J. F. Macbr. Aspidosperma excelsum Benth. Brosimum acutifolium Hubert. Brosimum potabile Ducke. Brosimum rubescens Taubert Calycophyllum abovatum (Ducke) Ducke. Caryocar glabrum (Aubl.) Pers. Cecropia distachya Hubert. Cecropia sciadophylla Mart. Cedrelinga cateniformis (Ducke) Ducke.	Annona excellens R. E. Fries. Aniba perutilis Hemsley Moena negra Anthodiscus pilosus Ducke. Chamisa Apeiba membranacea Spruce Apeiba leiocarpa (I.Vogel)J. F. Macbr. Aspidosperma excelsum Benth. Brosimum acutifolium Hubert. Brosinum potabile Ducke. Brosimum rubescens Taubert Calycophyllum abovatum (Ducke) Ducke. Capirona de altura Caryocar glabrum (Aubl.) Pers. Cecropia distachya Hubert. Cedrelinga cateniformis (Ducke) Ducke. Tornillo

16 Cinchona micrantha Ruiz et. Pav.	Cinchona micranta	RUBIACEAE
17 Cinchona oficinalis Linn.	Cinchona	RUBIACEAE
18 Cinchona pubescens Vahl.	Cinchona pubens	RUBIACEAE
19 Cinchona rufinervis Wedd.	Cinchona hoja median	a RUBIACEAE
20 Claricia rasemosa R. et P.	Tulpay	MORACEAE
21 Claricia sp.	Tulpay negro	MORACEAE
22 Clusia rosea Jacq.	Renaquillo	CLUSIACEAE
23 Clusia spruceana Planch et. Triana.	Clusia	CLUSIACEAE
24 Cordia alliodora (R.et. P.) Clamb.	Añallo caspi	BORAGINACEAE
25 Erisma bicolor Ducke.	Quillosisa	VOCHYSACEAE
26 Erythrina poeppigiana (Walp.) O. F. Cook	Eritrina	PAPILIONACEAE
27 Ficus insipida Willd.	Ojé negro	MORACEAE
28 Fusaea decurrens R:et Fries.	Espintana	ANNONACEAE
29 Eugenia fatrisii M.Vahl.	Sacha huayaba	MYRTACEAE
30 Guarea silvatica C.D.C.	Requia de altura	MELIACEAE
31 Guateria elata R.E. Fries	Carahuasca negra	ANNONACEAE
32 Guateria melosma Diels.	Carahuasca	ANNONACEAE
33 Heliocarpus popayeanensis H. B. K.	Llausaquiro	TILIACEAE
34 Hevea nitida Muel. Arg.	Shiringa	EUPHORBIACEAE
35 Himathantus sucumba (M. H.) Word.	Bellaco caspi	APOCYNACEAE
36 Hymenaea oblongifolia Huber.	Azúcar huayo	CAESALPINACEAE
37 Inga thibaudiana DC.	Shimbillo de altura	MIMOSACEAE
38 Iryanthera lancifolia Ducke.	Cumala colorada	MIRYSTICACEAE
39 Iryanthera ulei Warrb.	Cumala amarilla	MIRYSTICACEAE
40 Jacaranda copaia (C. Mart. Ex. A. Dc.) A.G.	Huamanzamana	BIGNONIACEAE

	,		
41	Jacaratia digitata L.	Papaya caspi	CARICACEAE
42	Ladenbergia magnifolia (Ruiz, López y Parón) Klots.	Cascarilla	RUBIACEAE
43	Licania emarginata Spruce ex Hooker.	Limón de monte	CHRYSOBALANACEAE
44	Loreya umbellata (Gleason) Wurd.	Loreya	MELASTOMATACEAE
45	Macrolobium gracile Spruce.	Pashaco cutanillo	MIMOSACEAE
46	Mansoa alliacea (Lamb.) Gentry.	Ajos Quiro	BIGNONIACEAE
47	Miconia longifolia (Aubl.) D.C.	Miconia	MELASTOMATACEAE
48	Miconia tetragona Cong.	Rifari	MELASTOMATACEAE
49	Miconia triplinervia L.	Manzanita tropical	MELASTOMATACEAE
50	Naucleopsis glabra Spnes ex Baill.	Capinuri	MORACEAE
51	Naucleopsis ternstroemiiflora (Mildr.)C.C. Berg.	Chimicua	MORACEAE
52	Nectandra amplifolia Mez.	Alcanfor moena	LAURACEAE
53	Nectandra capanahuensis O. Schmidt.	Moena amarilla	LAURACEAE
54	Nectandra turbaceusis (H.B.K.)Ness.	Canela moena	LAURACEAE
55		NN	
56	Ocotea dielsiana O. Schmidt.	Moena cerrada	LAURACEAE
57	Ocotea glomerata (Nees) Mez	Moena sin olor	LAURACEAE
58	Ocotea undulata (Meiss) Mez.	Isma moena	LAURACEAE
59	Ormosia amazonica Ducke	Huayruro negro	PAPILIONACEAE
60	Ormosia macrocalyx Ducke	Huayruro colorado	PAPILIONACEAE
61	Osteophloem platyspermum (A. DC.) Warb.	Favorito	MYRISTICACEAE
62	Pagamea guianensis Aublet.	Cicotria	RUBIACEAE
63	Parkia multijuga Bentham.	Pashaco curtidor	MIMOSACEAE
64	Parkia pendula (Willdenow) Bentham ex Walpers.	Pashaco blanco	MIMOSACEAE
65	Persea ferruginea (H.B.K.) Meiis.	Plano	LAURACEAE

	· · · · · · · · · · · · · · · · · · ·		
66	Persea grandis Mez.	Palta moena	LAURACEAE
67	Poulsenia armata (Miq). Stanell.	Balata	MORACEAE
68	Pouroma bicolor C. Martires.	Uvilla hoja partida	CECROPIACEAE
69	Pouroma guianensis Aubl.	Uvilla minor	CECROPIACEAE
70	Pouteria sp.	Sacha caimito	SAPOTACEAE
71	Protium plagiocarpium Benoist.	Copal	BURSERACEAE
72	Protium trifoliolatum (Engl.) C. Mart.	Copalillo	BURSERACEAE
73	Remijia peruviana Standley.	Regia	RUBIACEAE
74	Rheedia garderiana Miers. Ex Planch et Trian.	Charichuelo	CLUSIACEAE
75	Rheedia sp.	Reedia	CLUSIACEAE
76	Sapium marmieri Hubert.	Gutapercha	SAPINDACEAE
77	Schizolobium amazonicum Huber Ducke	Pashaco colorado	MIMOSACEAE
78	Senefeldera inclinata Miil. Arg.	Huangana caspi	EUPHORBIACEAE
79	Senefeldera macrophylla Ducke.	Huangana	EUPHORBIACEAE
80	Sheflera morototoni (Aubl.) Decne et Pland.	Aceite caspi	ARALIACEAE
81	Simarouba amara Aubl.	Marupa	SIMAROUBACEAE
82	Spondias mombim L.	Ubos	ANACARDACEAE
83	Tachigali setifera (Ducke) Zarruchi & Herendeen.	Ucshaquiro	CAESALPINACEAE
84	Taleernaemontana sananho R Y P.	Sanango	APOCYNACEAE
85	Terminalia oblonga Ducke.	Yacushapana	COMBRETACEAE
86	Theobroma subincanum C. Martius.	Cacao de monte	STERCULIACEAE
87	Trichilia septentrionalis C. DC.	Trichilia	MELIACEAE
88	Tocoyema williamsii Standley.	Sacha huito	RUBIACEAE
89	Unonopsis floribunda Diles.	Icoja	ANONACEAE
90	Virola calophylla Warb.	Cumala hoja marrón	MIRYSTICACEAE

Cuadro 2 (Continuación)

91	Virola decorticans Ducke.	Cumala hoja ancha	MIRYSTICACEAE
92	Virola elongata (Benth) Warb.	Cumala blanca	MIRYSTICACEAE
93	Virola sp.	Cumala	MIRYSTICACEAE
94	Vitex trifolia L.	Paliperro	VERVENACEAE
95	Vismia amazonica Ewan.	Pichirina hoja ancha	CLUSIACEAE
96	Vismia guianensis (Aubl.) Choisy.	Pichirina amarilla	CLUSIACEAE
97	Vismia covanesis (Jack) Pers.	Pichirina negra	CLUSIACEAE
98	Vitex pseudolea Rusby.	Vitex	VERVENACEAE

4.2. Crecimiento en diámetro

El promedio de crecimiento anual por cada una de las PPM, se obtiene un promedio anual para el bosque primario del BRUNAS de 0.38 cm/año (cuadro 3).

Cuadro 3. Promedio de crecimiento anual de diámetro (cm/año) por PPM del BRUNAS.

Parámetro	PPM 1	PPM 2	РРМ 3	PP M 4	Promedio anual (cm/año)
Promedio de crecimiento por PPM	0.38	0.41	0.41	0.33	0.38

4.2.1. Crecimiento anual por especie

El promedio de crecimiento anual por cada una de las especies evaluadas dentro de cada PPM, las mismas que son representativas para el

bosque primario del BRUNAS, donde se puede apreciar que la especie *Vitex trifolia*, alcanzó el más alto promedio de crecimiento con 1.9 cm/año (cuadro 4).

Cuadro 4. Promedio del crecimiento anual en diámetro por especie del BRUNAS.

N°	Nombre científico	Nombre común	Promedio cm/año
1	Annona excellens R.E. Fries.	Anonilla	0.363
2	Aniba perutilis Hemsley	Moena negra	0.567
3	Anthodiscus pilosus Ducke.	Chamisa	0.223
4	Apeiba membranacea Spruce	Peine de mono	0.300
5	Apuleia leiocarpa (I.Vogel)J. F. Macbr.	Ana caspi	1.145
6	Aspidosperma excelsum Benth.	Remo caspi	0.143
7	Brosimum acutifolium Hubert.	Manchinga	0.365
8	Brosinum potabile Ducke.	Tulpay blanco	0.254
9	Brosimum rubescens Taubert	Palo peruano	0.159
10	Calycophyllum abovatum (Ducke) Ducke.	Capirona de altura	0.217
11	Caryocar glabrum (Aubl.) Pers.	Almendra	1.080
12	Cecropia distachya Hubert.	Loro cetico	0.637
13	Cecropia sciadophylla Mart.	Cetico cedofila	0.750
14	Cedrelinga cateniformis (Ducke) Ducke.	Tornillo	0.477
15	Cinchona humboltiana Lamb.	Cinchona humbolt	0.330
16	Cinchona micrantha Ruiz et. Pav.	Cinchona micranta	0.379
17	Cinchona oficinalis Linn.	Cinchona	0.528
18	Cinchona pubescens Vahl.	Cinchona pubens	0.298
19	Cinchona rufinervis Wedd.	Cinchona hoja mediana	0.064
20	Claricia rasemosa R. et P.	Tulpay	0.315

		,		
•	21	Claricia sp.	Tulpau negro	0.286
	22	Clusia rosea Jacq.	Renaquillo	0.422
	23	Clusia spruceana Planch et. Triana.	Clusia	0.228
	24	Cordia alliodora (R.et. P.) Clamb.	Añallo caspi	0.191
	25	Erisma bicolor Ducke.	Quillosisa	0.162
	26	Erythrina poeppigiana (Walp.) O. F. Cook	Eritrina	0.541
	27	Ficus insipida Willd.	Ojé negro	0.151
	28	Fusaea decurrens R:et Fries.	Espintana	0.383
	29	Eugenia fatrisii M.Vahl.	Sacha huayaba	0.064
	30	Guarea silvatica C.D.C.	Requia de altura	0.361
	31	Guateria elata R.E. Fries	Carahuasca negra	0.472
	32	Guateria melosma Diels.	Carahuasca	0.371
	33	Heliocarpus popayeanensis H. B. K.	Llausaquiro	0.045
	34	Hevea nitida Muel. Arg.	Shiringa	0.361
	35	Himathantus sucumba (M. H.) Word.	Bellaco caspi	0.955
	36	Hymenaea oblongifolia Huber.	Azúcar huayo	0.369
	37	Inga thibaudiana DC.	Shimbillo de altura	0.573
	38	Iryanthera lancifolia Ducke.	Cumala colorada	0.480
	39	Iryanthera ulei Warrb.	Cumala amarilla	0.064
	40	Jacaranda copaia (C. Mart. Ex. A. Dc.) A.G.	Huamanzamana	0.588
	41	Jacaratia digitata L.	Papaya caspi	0.435
	42	Ladenbergia magnifolia (Ruiz, López y Parón) Klots.	Cascarilla	0.487
	43	Licania emarginata Spruce ex Hooker.	Limón de monte	0.032
	44	Loreya umbellata (Gleason) Wurd.	Loreya	0.405

Cua	dro 4 (Continuacion)		
45	Macrolobium gracile Spruce.	Pashaco cutanillo	0.312
46	Mansoa alliacea (Lamb.) Gentry.	Ajos Quiro	0.185
47	Miconia longifolia (Aubl.) D.C.	Miconia	0.828
48	Miconia tetragona Cong.	Rifari	0.531
49	Miconia triplinervia L.	Manzanita tropical	0.112
50	Naucleopsis glabra Spnes ex Baill.	Capinuri	0.353
51	Naucleopsis ternstroemiiflora (Mildr.)C.C. Berg.	Chimicua	0.591
52	Nectandra amplifolia Mez.	Alcanfor moena	0.382
53	Nectandra capanahuensis O. Schmidt.	Moena amarilla	0.219
54	Nectandra turbaceusis (H.B.K.)Ness.	Canela moena	0.331
55	***************************************	NN	0.413
56	Ocotea dielsiana O. Schmidt.	Moena cerrada	0.064
57	Ocotea glomerata (Nees) Mez	Moena sin olor	0.324
58	Ocotea undulata (Meiss) Mez.	Isma moena	0.222
59	Ormosia amazonica Ducke	Huayruro negro	0.248
60	Ormosia macrocalyx Ducke	Huayruro colorado	0.318
61	Osteophloem platyspermum (A. DC.) Warb.	Favorito	0.122
62	Pagamea guianensis Aublet.	Cicotria	0.398
63	Parkia multijuga Bentham.	Pashaco curtidor	0.430
64	Parkia pendula (Willdenow) Bentham ex Walpers.	Pashaco blanco	0.032
65	Persea ferruginea (H.B.K.) Meiis.	Plano	0.375
66	Persea grandis Mez.	Palta moena	0.656
67	Poulsenia armata (Miq). Stanell.	Balata	0.336
68	Pouroma bicolor C. Martires.	Uvilla hoja partida	0.467

Cua	uro 4 (Continuación)		
69	Pouroma guianensis Aubl.	Uvilla minor	0.457
70	Pouteria sp.	Sacha caimito	0.317
71	Protium plagiocarpium Benoist.	Copal	0.390
72	Protium trifoliolatum (Engl.) C. Mart.	Copalillo	0.576
73	Remijia peruviana Standley.	Regia	0.245
74	Rheedia garderiana Miers. Ex Planch et Trian.	Charichuelo	0.246
75	Rheedia sp.	Reedia	0.284
76	Sapium marmieri Hubert.	Gutapercha	0.545
77	Schizolobium amazonicum Huber Ducke	Pashaco colorado	0.423
78	Senefeldera inclinata Miil. Arg.	Huangana caspi	0.238
79	Senefeldera macrophylla Ducke.	Huangana	0.251
80	Sheflera morototoni (Aubl.) Decne et Pland.	Aceite caspi	0.600
81	Simarouba amara Aubl.	Marupa	0.500
82	Spondias mombim L.	Ubos	0.143
83	Tachigali setifera (Ducke) Zarruchi & Herendeen.	Ucshaquiro	0.677
84	Taleernaemontana sananho R Y P.	Sanango	0.192
85	Terminalia oblonga Ducke.	Yacushapana	0.840
86	Theobroma subincanum C. Martius.	Cacao de monte	0.287
87	Trichilia septentrionalis C. DC.	Trichilia	0.181
88	Tocoyema williamsii Standley.	Sacha huito	0.127
89	Unonopsis floribunda Diles.	Icoja	0.661
90	Virola calophylla Warb.	Cumala hoja marrón	0.429
91	Virola decorticans Ducke.	Cumala hoja ancha	0.196
92	Virola elongata (Benth) Warb.	Cumala blanca	0.507
93	Virola sp.	Cumala	0.261

94	Vitex trifolia L.	Paliperro	1.908
95	Vismia amazonica Ewan.	Pichirina hoja ancha	0.162
96	Vismia guianensis (Aubl.) Choisy.	Pichirina amarilla	0.979
97	Vismia covanesis (Jack) Pers.	Pichirina negra	0.159
98	Vitex pseudolea Rusby.	Vitex	0.446

4.2.2. Área basal por PPM

El área basal por cada una de las PPM evaluadas, de las cuales el promedio anual es de 25.62 m²/ha/año (Figura 1).

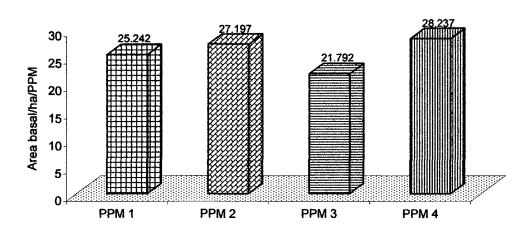


Figura 1. Promedio de área basal por PPM

4.3. Incremento medio anual (IMA %)

El promedio del IMA por cada una de las PPM, presenta un promedio anual representativo para el bosque primario del BRUNAS de 2.9% (Figura 2).

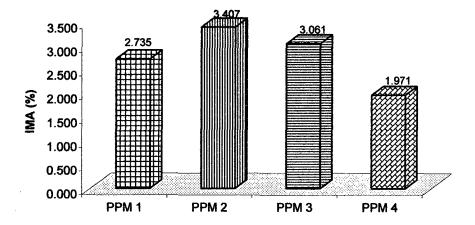


Figura 2. Incremento medio anual por PPM.

4.4. Mortalidad y reclutamiento

De la mortalidad y el reclutamiento, de cada una de las PPM, se obtuvo una mortandad de 0.41% y el reclutamiento de 1.85% (Figura 3).

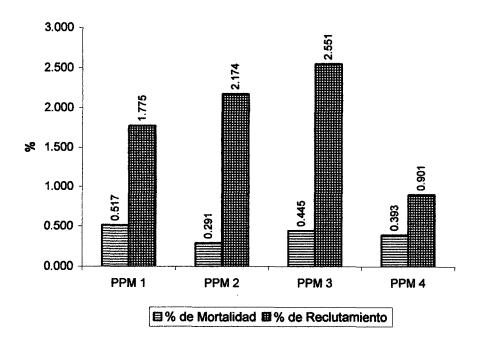


Figura 3. Mortalidad y reclutamiento por PPM.

4.5. Variables ecológicas

Se evaluaron las variables de calidad de fuste, forma de copa, iluminación de copa y presencia de lianas, como se muestran en las figuras siguientes:

La variable de calidad de fuste en las cuatro PPM evaluadas, siendo para ello la característica comercial en el futuro como la más representativa, con una media de 84%, seguido por la comercial actualmente con una media de 5.88% y siendo la más baja, el de fuste podrido con una media de 0.12% (Figura 4).

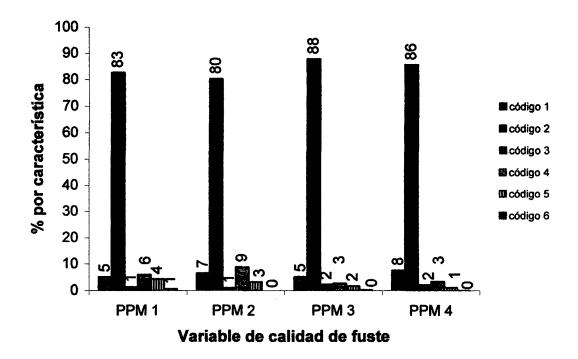


Figura 4. Calidad de fuste por PPM.

La forma de copa predominante en cada una de las PPM, es representada por la característica medio círculo, con una media de 47.22%, seguido por menos de medio círculo con 27.02% y siendo la más baja la característica viva sin copa, con una media de 1.33% (Figura 5).

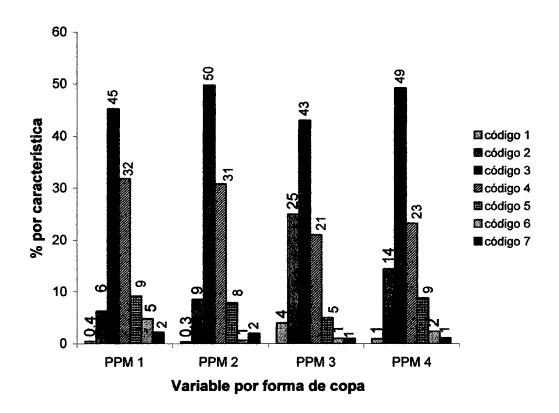


Figura 5. Forma de copa por PPM.

La variable de iluminación de copa, con la característica iluminación oblicua, como la más representativa en todas las PPM, presenta una media de 35.55%, seguido de nada directa con 21.36%, siendo la más baja la plena emergente con una media de 11.53% (Figura 6).

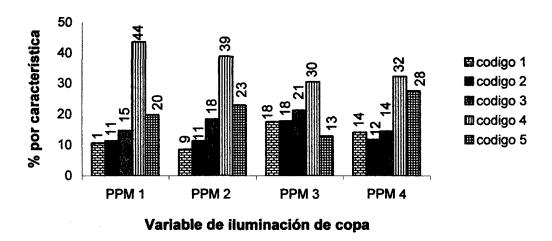


Figura 6. Iluminación de copa por PPM.

La variable de presencia de lianas, es la característica de fuste sin lianas, como la más representativa en todas las PPM con una media de 64.24% de todos los individuos evaluados, seguido de lianas sueltas en el fuste y existentes en la copa con 13.09%, y presentando la media más baja de 0.85%, las características de: ninguna visible en el fuste pero cubriendo más del 50% de la copa y apretando el fuste pero cubriendo más del 50 % de copa (Figura 7).

Figura 7. Presencia de lianas por PPM:

V. DISCUSIÓN

5.1. Composición florística

La composición florística existente en el bosque primario del BRUNAS, presenta 97 especies de 67 géneros distribuidas en 32 familias, más una especie no identificada. CÁRDENAS (1995), en un inventario forestal del BRUNAS encontró 111 especies, 70 géneros y 32 familias. Según RODRÍGUEZ (2000), en un estudio cuantitativo de la diversidad florística en el BRUNAS, encontró 10 especies distribuidas en 14 familias. BUENDÍA (1996), en un estudio de biodiversidad del Parque Nacional Tingo María, encontró 81 especies, 72 géneros distribuidos en 47 familias. MARCOS (1996), en un estudio del plan maestro para el establecimiento de un arboreto en el BRUNAS, encontró 52 especies con 32 géneros distribuidos en 18 familias que Comparado con los resultados, se encuentra relativa diferencia en la composición florística.

5.2. Crecimiento en diámetro

Para el crecimiento anual en el BRUNAS, se determinó un promedio de 0.38 cm/año, según Veillon (1983), citado por LAMPRECHT (1990) determinó en bosques húmedos primarios en Venezuela un crecimiento de 0.45 cm/año pero según WADSWORTH (2000), en los bosques pluviales de la India el crecimiento es 0.3 cm/año, en los bosques pluviales de Nigeria

de 0.7 cm/año; en el Zaire en un resumen de 7 años de evaluación en tres especies, demostró que el crecimiento es de 2.0 cm/año. El autor señala que, excepcionalmente árboles expuestos en los bosques húmedos tropicales de Puerto Rico pueden crecer a una tasa de 2.5 cm/año de diámetro. RUIZ (2004), encontró en los bosques secundarios de Tingo María, un crecimiento de 0.56 cm/año en Supte San Jorge y 0.10 cm/año en el BRUNAS. Así mismo PRODAN et al. (1997), señala que el crecimiento de los árboles individuales está influido por sus características genéticas y su interrelación con al medio ambiente, factores climáticos y de suelo y características topográficas, cuya suma representa la calidad de sitio.

En el crecimiento promedio anual por especie, el mayor crecimiento se registró en *Vitex trifolia* con 1.91 cm/año y el más bajo en las especies *Licania emarginata* y *Parkia pendula* con 0.032 cm/año. Según PRODAN *et al.* (1997), la estimación del crecimiento es una etapa esencial en el manejo forestal y el concepto básico de recurso renovable se deriva de la propiedad de crecimiento y cualquier planificación encierra el concepto de predicción del crecimiento.

El área basal promedio anual encontrada en el BRUNAS, es de 25.62 m²/ha/año. Según LOMBARDI (s/f), señala que los valores para las distintas regiones tropicales, el área basal se encuentra entre 32 m²/ha y 37 m²/ha. Así mismo Foster (1973), citado por LAMPRECHT (1990), hace mención que el área basal promedio en Carare-Opon/Colombia, es de 28.1 m²/ha, ZOUDRE (1998), indica que el promedio estimado de un bosque virgen

es de 38 m²/ha. Estos datos comparando con los resultados alcanzados en la presente investigación, tienen una baja capacidad productiva debido a que los individuos con diámetros entre 10 cm a 39.9 cm de dap, representan el 84% de los árboles evaluados. Puesto que ZOUDRE (1998), indica que el área basal, es el indicador de la fertilidad natural del sitio o el que permite medir la capacidad productiva del bosque.

5.3. Incremento medio anual (IMA %)

El IMA, encontrado en el bosque primario del BRUNAS es de 2.89%. RUIZ (2004), determinó que el IMA del bosque secundario del BRUNAS es de 4.76% y de SUPTE 4.87% siendo superior al resultado obtenido en el estudio. Según FINEGAN (1997), los mayores incrementos se obtienen entre los árboles con exposición a la luz de excelente a muy buena, árboles cuyas copas forman círculo completo o algo asimétrico y que se encuentran libres de lianas. Así mismo, PINELO (2000) señala que en investigaciones forestales, es muy común el uso de incremento diamétrico o absoluto, aunque para manejo forestal, los datos de incremento o media anual en área basal, son de mayor utilidad para determinar la sostenibilidad del recurso.

5.4. Mortalidad y reclutamiento

La mortalidad determinada en el bosque primario del BRUNAS, es de 0.41%. Según FINEGAN (1997), indica que a nivel de rodal entero, las tasas anuales de mortalidad para bosques húmedos tropicales oscilan entre 0.5% y 2.5%, pero el bosque húmedo de la selva en Guatemala, presentó 1.8% y 2.25%. Asimismo, RUIZ (2004) encontró que la mortalidad en los bosques

secundarios: del BRUNAS es 9.02% y de SUPTE de 6.85%. Nuestro resultado comparado con FINEGAN (1997), se encuentra relativamente en el margen encontrado por él, pero comparando con el bosque secundario, según Ruiz (2004) es muy bajo.

El reclutamiento del BRUNAS es de 1.85%. PINELO (2000), indica que el reclutamiento es relativo ya que depende de la densidad del bosque donde se establece el experimento.

FINEGAN (1997) menciona que los datos de mortalidad y reclutamiento, indican que el bosque se mantiene en una condición relativamente estable y que a menudo la competencia provoca la muerte natural de los árboles que permanecen pequeños. Concluye que hay muchos cambios en el bosque, muchos muertos y reclutas, pero a pesar de estos cambios, el bosque tiene la capacidad de mantener sus características actuales, ya que el número de reclutas es casi igual al número de muertos.

ODUM (1996) indica que la tasa de crecimiento, tasa de mortalidad, densidad y otras son significativas solamente a nivel de grupo y si se quiere comprender en su totalidad la ecología de una especie, se deben estudiar y medir las características de ese grupo de población.

5.5. Variables ecológicas

5.5.1. Calidad de fuste

La calidad de fuste, en el bosque primario del BRUNAS se encuentra representada por la característica comercial en el futuro con una media de 84.23%, mientras que la característica comercial actualmente muestra un bajo porcentaje con tan solo 5.88%. Lo que indica que el bosque del BRUNAS, no cuenta con un volumen aprovechable. RUIZ (2004) encontró bosques secundarios del BRUNAS, en un promedio de 70.08%, de individuos con la característica comercial en el futuro y de 7.95% para los individuos actualmente comerciales. Según Hutchinson (1992), citado por PINELO (2000), se utilizan estas características fitosanitarias, para determinar el potencial de trozas a aprovechar.

5.5.2. Forma de copa

Para el BRUNAS, la forma de copa predominante, esta dado por la característica medio círculo con una media de 47.22%, seguido por la característica menos de medio círculo con una media de 27.02%. RUIZ (2004) señala que la forma de copa predominante en el bosque secundario del BRUNAS, esta dado por la característica círculo irregular con 88.46% en promedio. Los resultados indican que existe un excelente vigor de los árboles, la misma que influye en la productividad de madera, como mencionan PINELO (2000) y WADSWORTH (2000), la forma y tamaño de copa del árbol indica el vigor del individuo, según la especie y su estado de desarrollo.

5.5.3. Iluminación de copa

La iluminación de copa predominante en el bosque primario del BRUNAS, esta representado por la característica iluminación oblicua con una

media de 35.55% y la iluminación emergente muestra una media de 12.33%. Indicándonos claramente que en el estudio predominan los individuos de las clases diamétricas inferiores a 40 cm de dap. RUIZ (2004) encontró en el bosque secundario del BRUNAS, que la característica de iluminación de copa emergente, es predominante, con un promedio de 44.66%. Estos resultados del presente estudio, se muestran debido a que las especies dominantes y codominantes son pocas y la regeneración natural es abundante. CAMACHO (2000) indica que la iluminación que recibe la copa de los árboles es una de las variables más importantes en el estudio de crecimiento, pues existe una alta correlación entre el nivel de iluminación y la tasa de crecimiento de los árboles. Además, WADSWORTH (2000) señala que los árboles del bosque difieren en cuanto a su nivel de tolerancia, la capacidad de sobrevivir y crecer en condiciones de baja intensidad de luz. Muchos árboles del dosel que viven completamente expuestos en la madurez, en un principio aguantaron años de sombra intensa, hasta que ocurrieron aperturas adecuadas para estimular su crecimiento.

5.5.4. Presencia de lianas

La presencia de lianas en el bosque primario del BRUNAS, está representado por la característica sin lianas en el fuste con una media de 64.24%, lo que indica una supervivencia y producción futura de madera asegurada, como hace mención, PINELO (2000) y PEREZ (1997), en un estudio de efecto de corte de bejuco en un bosque Boliviano, encontró que: el 13% de los árboles tenían bejucos en el tallo, 12% hasta la porción basal de la copa, 25% en la parte media de la copa y el 50% colonizando hasta la parte

externa de la copa del árbol, en comparación con el presente trabajo de investigación solo el 3.5% de los árboles se encuentran con infestación de lianas apretando el fuste y existentes en copa, lo cual no afecta de manera significativa a la calidad del fuste. Así mismo en un bosque secundario la presencia de lianas esta dado por la característica fuste sin lianas con un promedio del 70.43% de los individuos evaluados por RUIZ (2004) y según CAMACHO (2000) la presencia de lianas en el fuste es un factor muy importante, debido a que pueden llegar a tener un efecto muy negativo en el desarrollo de los árboles e influir significativamente en su aprovechamiento.

VI. CONCLUSIONES

- En las cuatro PPM del BRUNAS, se encontró 97 especies con 67 géneros distribuidos en 32 familias.
- 2. La tasa de crecimiento en diámetro, del bosque primario del BRUNAS es de 0.38 cm/año; la tasa más alta de crecimiento anual, en diámetro por especie, está dado por Vitex trifolia con 1.91 cm/año, y la más baja por las especies Licania emarginata y Parkia pendula, con 0.032 cm/año respectivamente.
- 3. El área basal media por ha, es de 25.62 m²/ha/año y el crecimiento del diámetro en el bosque primario del BRUNAS, muestra un IMA de 2.898%.
- 4. La mortalidad en el bosque primario del BRUNAS es de 0.41% y el reclutamiento es de 1.85%.
- 5. Las variables ecológicas del bosque primario BRUNAS, con respecto a la calidad de fuste, están dados por la característica comercial en el futuro, con una media de 84.23%; la forma de copa (medio circulo) es la más representativa con 47.22%, la iluminación de copa (oblicua) alcanzó un 35.55% y la presencia de lianas (sin lianas en el fuste) presenta 64.24%.

VII. RECOMENDACIONES

- Realizar futuros trabajos de identificación taxonómica de las especies forestales existentes en las PPM.
- Realizar un seguimiento continuo de las PPM, para obtener información más precisa, que sirva como herramienta para la toma de decisiones en el manejo de bosques.
- Validar este trabajo como un área de investigación permanente, el cual permita obtener datos, que sirvan de base para el manejo sostenible de bosques en la zona de Tingo María.
- 4. La instalación y evaluación, deben realizarse en época seca, la cual permita desarrollar óptimamente el trabajo de campo, de manera que se evite los impactos negativos en la regeneración natural.
- Expresar los resultados con una mediana, porque el promedio sobreestima y subestima las variables evaluadas, no habiendo una tendencia central de los datos.
- Se recomienda realizar estudios de suelo en las parcelas permanentes de medición.

VIII. ABSTRACT

"Establishment and Evaluation of Permanent Plots of Mensuration in the Reserved Forest of the National Agrarian University of the Jungle"

The present research work was carried out in Tingo María, from January to December 2002. The objectives were: to know the floristic composition, to evaluate the growth half annual increment (HAI), recruitment and mortality, as well as the shaft quality, cup shape, cup illumination and tail plant presence in the permanent plot of mensuration in the Reserved Forest of the National Agrarian University of the Jungle (RFNAUF).

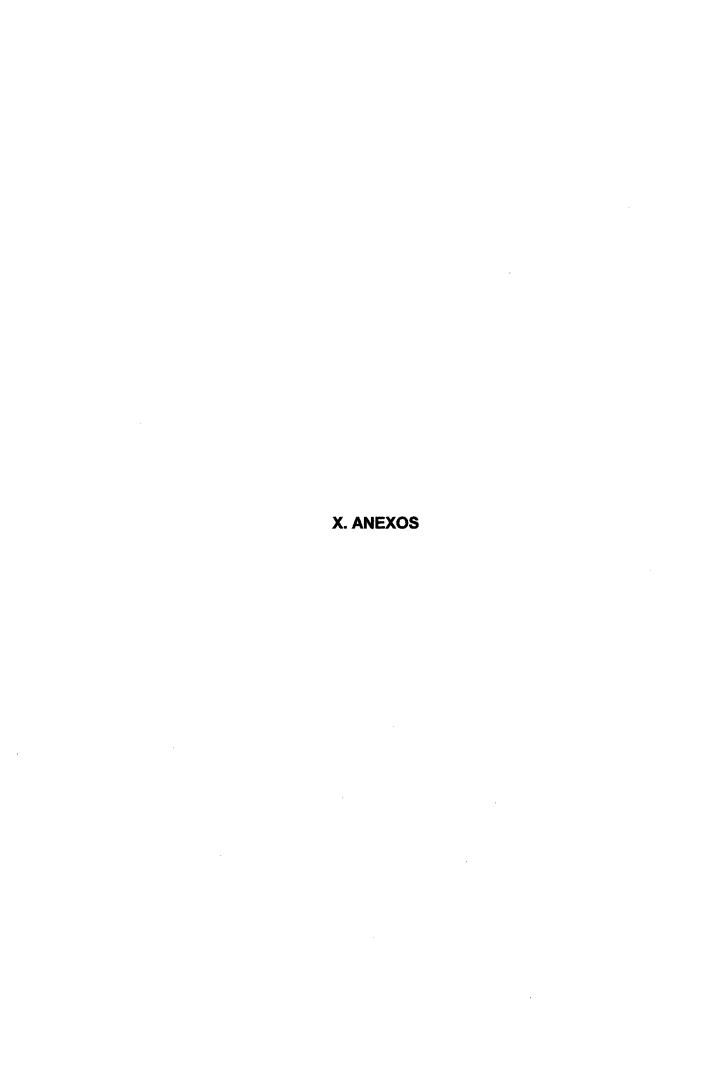
Four PPM was settled down with the following dimensions: 100 m x 100 m, with 25 sub-plots of 20 m x 20 m each one. The evaluated variables were dasonomics and ecologicals, following the proposed methodology by PINELO (2000) and CAMACHO (2000).

The obtained results of the PPM installed in the primary forest were as follow: Floristic composition of 97 species, with 67 genders, distributed in 32 families, rate of growth of the diameter 0.38 cm/year, *Vitex trifolia,* presented the highest growth with 1.91 cm/year and *Licamia emarginata, Parkia pendula,* were the lowest with 0.032 cm. The basal area was 25.62 m2/ha/year, while the HAI was 2.90%, mortality of 0.41 % and a recruitment of 1.85 %.

The ecological variables such as the quality of the shaft, becomes important, because gives the future commercial value, and in this case was

84.23 %, the cup shape (half circular) more representative 47.22%, the cup illumination (oblique) reached 35.55% and presence of tail plants (without tail plants in the shaft) reached 64.24%.

IX. REFERENCIAS BIBLIOGRÁFICAS


- BOLFOR. 1999. Guía para la Instalación y Evaluación de Parcelas Permanentes de Muestreo. Santa Cruz de la Sierra-Bolivia. 51 p.
- 2. BOSQUES AMAZÓNICOS. 2001. Revista Peruana de Actualidad Forestal y Medio Ambiente Nº 25. Iquitos Perú. 38 p.
- 3. BUENDIA B. 1996. Evaluación de la Biodiversidad Florística en un Área del Parque Nacional Tingo María-Perú. Tesis Ing. En Recursos Naturales Renovables, Mención Forestales. Tingo María, Perú. Universidad Nacional Agraria de la Selva. 87 p.
- CAMACHO, M. 2000. Parcelas permanentes de muestreo en bosque natural tropical: "Guía para el establecimiento y medición" Turrialba, Costa Rica: CAME, 2000. Manual Técnico N° 42/CATIE.
- 5. CÁRDENAS S. 1995. Inventario Exploratorio del Potencial Maderable en los Bosques de la Universidad Nacional Agraria de la Selva Tingo María-Perú. Tesis Ing. En Recursos Naturales Renovables, Mención Forestales. Tingo María, Perú. Universidad Nacional Agraria de la Selva. 91.p.
- CLAROS A. A. y LICONA J. V. 1999. Resumen de Trabajos de Establecimiento de parcelas permanentes de medición en la zona de

- Las Trancas Lomerío. Boletín Bolfor Nº 4, agosto 1995. Santa Cruz. Bolivia.
- FINEGAN, B. 1997. BASES ECOLÓGICAS PARA EL MANEJO DE BOSQUES TROPICALES. Comunidades de bosques tropicales.
 CATIE. Turrialba – Costa Rica.
- 8. INRENA, 1995. Mapa Ecológico de Zonas de Vida del Perú.
- LAMPRECHT H. 1990. Silvicultura en los Trópicos: los ecosistemas forestales en los bosques tropicales y sus especies arbóreas; posibilidades y métodos para un aprovechamiento sostenido. Deutsche Gesellschaft fur Technische Zunsammenarbeit. Berlín, Alemania. 335 p.
- 10. LEAÑO CH. C. y SARAVIA P. 1998. Monitoreo de parcelas permanentes de medición en el bosque Caimanes. Proyecto de manejo forestal sostenible BOLFOR. Documento Técnico 67/1998. Santa Cruz, Bolivia. 22 p.
- 11. LOMBARDI, I. (s/f). Ecosistemas Forestales Tropicales y sus posibilidades de manejo. UNALM Lima.
- 12. MARCOS C. 1996. Plan Maestro para el Establecimiento de un Arboreto en el Bosque Reservado de la Universidad Nacional Agraria de la Selva, Tingo María. Tesis Ing. En Recursos Naturales Renovables, Mención Forestales. Tingo María, Perú. Universidad Nacional Agraria de la Selva. 119 p.
- 13. MARGALEF, R. 1986. Ecología. 5ta. Edc. Edit. Omega, S.A., Barcelona España.

- ODUM, E. 1983. Ecología.3^{ra} edc. Edit. Nueva editorial Interamericana,
 S.A. México, D.F.
- ODUM, E. 1996. Ecología. Décima octava reimpresión. Edt. Continental
 S.A. DC. C.V. México.
- 16. ONERN, 1976. Mapa Ecológico del Perú (Guía explicativa). Oficina Nacional de Evaluación de los Recursos Naturales. Lima, Perú. 146 p.
- 17. PEREZ, D. 1997. Efecto de corte de bejucos sobre la estructura de un bosque Boliviano: Recomendaciones y evaluación de una práctica Silvicultural. Simposio internacional "Posibilidades de manejo forestal sostenible en América Tropical". Santa Cruz-Bolivia. 5 p.
- 18. PINELO, M. 2000. Manual para el Establecimiento de Parcelas Permanentes de Muestreo en la Reserva de la Biosfera Maya, Petén, Guatemala. Turrialba, Costa Rica 52 p.
- 19. PRODAN, M; PETERS, R; COX, F y REAL, P. 1997. Mensura Forestal.
 Proyecto IICA/GTZ sobre Agricultura, Recursos Naturales y
 Desarrollo sostenible. San José de Costa Rica.
- 20. RODRIGUEZ, S. 1985. Dasonomía. Iquitos Perú. 103 p.
- 21. RODRÍGUEZ, T 2000. Estudio Cuantitativo de la Diversidad Forestal del Bosque Reservado de la Universidad Nacional Agraria de la Selva Tingo María-Perú. Tesis Ing. En Recursos Naturales Renovables, Mención Forestales. Tingo María, Perú. Universidad Nacional Agraria de la Selva. 70 p.
- 22. RUIZ, G. 2004. Evaluación de parcelas permanentes de medición (PPM) en bosques secundarios de Tingo María. Tesis Ing. En Recursos

- Naturales Renovables, Mención Forestales. Tingo María, Perú. Universidad Nacional Agraria de la Selva. 76 p.
- 23. SAENZ et al. 1998. Centro Agronómico Tropical de Investigación y enseñanza. Unidad de Manejo de Bosques Naturales. Turrialba, Costa Rica. 13 p.
- 24. WADSWORTH, F. 2000. Producción Forestal para América Tropical.

 Versión Español USDA, CATIE y IUFRO.
- 25. ZOUDRE, Z. 1998. Análisis de un sistema de manejo de regeneración natural para la producción de madera aserrada de tornillo (*Cedrelinga catenaeformis* Ducke), el Bosque Nacional Alexander Von Humboldt. Ucayali Perú. 103 p.

ANEXO 1: Cuadros.

Cuadro 5. Datos meteorológicos correspondientes al periodo de ejecución del trabajo (2002).

Mes	Temperatura	H. relativa media	Precipitación
Mes	media (°C)	(%)	total (mm)
Enero	25.0	86	303.2
Febrero	24.4	90	590.7
Marzo	24.9	86	405.7
Abril	25.5	87	306.9
Mayo	25.2	85	413.5
Junio	24.4	83	149.4
Julio	24.1	84	190.1
Agosto	24.7	81	145.0
Setiembre	24.8	81	137.3
Octubre	25.1	83	292.4
Noviembre	24.7	85	500.0
Diciembre	25.00	87	483.60
Promedio	24.82	85	326.48

Fuente: Estación meteorológica José Abelardo Quiñones – UNAS.

Cuadro 6: total de árboles y especies por PPM del BRUNAS.

	Numero de Árboles		
Parcelas	Primera Evaluación.	Segunda Evaluación .	Numero de especies
PPM N° I	676	680 .	82
PPM N° II	598	605	59
PPM N° III	588	597	45
PPM N° IV	555	555	66

Cuadro 7: Códigos para calificar la calidad de fuste de los árboles.

Calidad de Fuste	N° de Código
Comercial actualmente	1
Comercial en el futuro	2
Comercial en el futuro pero con la base podrida (quemada)	3
Deformado ,	4
Dañado	5
Podrido	6

Fuente: Hutchinson (1992), citado por PINELO (2000)

Cuadro 8: Códigos para calificar la forma de copa de los árboles.

Forma de copa	N° de Código
Circulo completo	1
Circulo irregular	2
Medio circulo	3
Menos de medio circulo	4
Pocas ramas	5
Principales reprotes	6
Vivo sin copa	7

Fuente: Hutchinson (1992), citado por PINELO (2000)

Cuadro 9: Códigos para calificar la iluminación de la copa de los árboles

lluminación de la copa	N° de Código
Emergente	1
Plena emergente	2
Vertical parcial	3
Iluminación oblicua	4
Nada directa	5
Fuente: Hutchinson (1992), citado por PINELO (2000)	

Cuadro 10: Códigos para calificar la presencia de lianas en los árboles.

1 2 3
2
J
4
5
6
7
8
9
_

Fuente: Hutchinson (1992), citado por PINELO (2000)

Cuadro 11: Especies registrados en las PPM

Nº		ESPECIES FORESTALES	- DOM 1	DOM 1	DOM 3	DDM A	TOTAL
14	NOMBRE COMUN	NOMBRE CIENTIFICO	-rrm i	FFM 4	Frans	FFRI 4	IOIAL
1	aceite caspi	Sheflera morototoni (Aubl.) Decne et Pland	8	1	3	3	15
2	ajos quiro	Mansoa alliacea (Lamb.) Gentry	0	1	0	2	3
3	alcanfor moena	Nectandra amplifolia Mez.	0	1	1	0	2
4	almendra	Caryocar glabrum (Aubl.) Pers.	0	2	0	0	2
5	ana caspi	Apuleia leiocarpa (I.Vogel)J. F. Macbr.	0	1	0	0	1
6	añallo caspi	Cordia alliodora (R.et. P.) Clamb.	1	0	0	0	1
7	anonilla	Annona excellens R. E. Fries.	2	. 0	1	2	5
8	azucar huayo	Hymenaea oblongifolia.Juber.	0	2	2	3	7
9	balata	Poulsenia armata (Miq). Stanell.	3	3	0	0	6
10	bellaco caspi	Himathantus sucumba (M. H.) Word.	1	0	0	0	1
11	cacao de monte	Theobroma subincanum C. Martius	10	16	7	11	44
12	canela moena	Nectandra turbaceusis (H.B.K.)Ness.	3	1	0	1	5
13	capinuri	Naucleopsis glabra Spnes ex Baill.	1	17	5	3	26
14	capirona de altura	Calycophyllum abovatum (Ducke) Ducke.	3	0	1	2	6
15	carahuasca	Guateria melosma Diels.	3	0	0	0	3
16	carahuasca negra	Guateria elata R.E. Fries	16	1	6	10	33
17	cascarilla	Ladembergia magnifolia (Ruiz, Lopez y Parón)Klots.	2	2	0	2	6
18	cetico cedofila	Cecropia sciadophylla Mart.	19	21	38	24	102
19	chamisa	Anthodiscus pilosus Ducke.	1	1	0	1	3
20	charichuelo	Rheedia garderiana Miers. Ex Planch et Trian.	2	1	3	5	11
21	chimicua	Naucleopsis ternstroemiiflora (Mildr.)C.C. Berg.	6	10	0	0	16
22	cicotria	Pagamea guianensis Aublet.	5	13	21	14	53
23	cinchona hoja median	a Cinchona rufinervis Wedd.	1	0	0	0	1
	cinchona humbolt	Cinchona humboltiana Lamb.	1	4	0	5	10
25	cinchona micranta	Cinchona micrantha Ruiz et. Pav.	9	4	0	7	20
26	cinchona	Cinchona oficinalis Linn.	2	1	0	0	3
	cinchona pubens	Cinchona pubescens Vahl.	11	2	0	0	13
	clucia	Clusia spruceana Planch.et. Triana.	4	1	0	9	14
	copal	Protium plagiocrpium Beneist.	7	3	6	5	21
	copalillo	Protium trifoliolatum (Engl.)C.Mart.	7	1	0	0	8
	cumala amarilla	Iryanthera ulei Warrb.	1	0	0	0	1
32	cumala blanca	Virola elongata(Benth) Warb.	107	7	11	34	159
33	cumala colorada	Iryanthera lancifolia Ducke.	43	, 16	9	15	83
	cumala hoja ancha	Virola decorticans Ducke.	4	0	0	2	6
	cumala hoja marron	Virola calophylla Warb	0	3	1	21	25
36	cumala	Virola sp.	18	0	6	5	29
37	eritrina	Erythrina poeppigiana (Walp.) O.F. Cook.	0	0	0	1	1
38	espintana	Fusaea decurrens R:et Fries.	3	3	1	4	11
	favorito	Osteophioemplatyspermum (A. DC.) Warb.	0	1	0	0	1
	gutapercha	Sapium marmieri Hubert.	0	2	0	1	3
	huamanzamana	Jacaranda copaia (C. Mart. Ex. A. Dc.)A.G.	28	9	9	2	48
	huangana	Senefeldera macrophylla Ducke.	23	216	312	165	716
	huangana caspi	Senefeldera inclinata Miil. Arg.	23 60	6	6	11	83
	huayruro colorado	Ormosia macrocalyx Ducke	2	8	20	16	46
	huayruro negro	Ormosia amazonica Ducke.	0	1	0	4	5
	icoja	Unonopsis floribunda Diles.	0	1	0	0	1
	isma moena	Ocotea undulata (Meiss)Mez.	_				1
	limón de monte	Licania emarginata Spruce ex Hooker.	0	0	0	1	
	minori de monte	Liverna emarginata opravo ox mouker.	1	0	0	0	1

Cuadro 11 (Conti				······································		
49 llausaquiro	Heliocarpus popayeanensis H. B. K.	7	1	0	0	8
50 loreya	Loreya umbellata (Gleason) Wurd	1	0	0	0	1
51 loro cetico	Cecropia distachya Hubert.	2	0	0	0	2
52 manchinga	Brosimum acutifolium Hubert.	2	27	3	2	34
53 manzanita tropical	Miconia triplinervia L.	2	0	0	0	2
54 marupa	Simarouba amara Aubl.	2	6	1	3	12
55 miconia	Miconia longifolia (Aubl.)D.C.	0	0	1	0	1
56 moena amarilla	Nectandra capanahuensis O. Schmid.	8	0	1	3	12
57 moena cerrada	Ocotea dielsiana O. Schmidt.	1	0	0	0	1
58 moena negra	Nectandra truxillensis Mez.	2	4	8	3	17
59 moena sin olor	Ocotea glomerata (Nees)Mez	4	0	6	6	16
60 N.N		13	18	3	1	35
61 oje negro	Ficus insipida Willd.	2	0	0	2	4
62 pali perro	Vitex trifolia L.	2	1	1	0	4
63 palo peruano	Cauratori sp.	0	0	0	1	1
64 paita moena	Persea grandis	4	4	2	1	11
65 papaya caspi	Jacaratia digitata L.	2	0	0	1	3
66 pashaco blanco	Parkia pendula (Willdenow) Bentham ex Walpers	1	0	0	0	1
67 pashaco colorado	Schisolobium Amazónicum Benth	37	0	4	2	43
68 pashaco curtidor	Parkia multijuga Bentham	2	0	0	0	2
69 pashaco cutanillo	Macrolobium gracile Spruce.	32	7	15	3	57
70 peine de mono	Apeiba membranacea Spruce.	5	0	2	8	15
71 pichirina amarilla	Vismia guianensis (Aubl.)Choisy.	3	0	3	2	8
72 pichirina hoja ancha	Vismia amazónica Ewan.	5	0	0	0	5
73 pichirina negra	Vismia covanesis (Jack) Pers.	1	0	0	0	1
74 plano	Persia ferruginea (H.B.K.)Meiis.	3	1	0	1	5
75 quillosisa	Erisma bicolor Ducke.	4	0	0	0	4
76 reedia	Rheedia sp.	0	2	0	0	2
77 regia	Remijia peruviana Standley.	7	0	0	2	9
78 remo caspi	Aspidosperma excelsum Benth.	1	1	0	0	2
79 renaquillo	Clusia rosea Jacq.	1	0	1	4	6
80 requia de altura	Guarea silvatica C.D.C.	2	12	12	29	55
81 rifari	Miconia tetragona Cong.	11	9	1	8	29
82 sacha caimito	Peutenia sp.	9	1	8	2	20
83 sacha huayaba	Eugenia fatrisii M.Vahl.	1	0	0	0	1
84 sacha huito	Tocoyema williamsii Atandley.	1	0	0	0	1
85 sanango	Taleemaemontana sananho R.y P.	1	0	0	1	2
86 shimbillo de altura	Inga thabaudiana	8	32	12	9	61
87 shiringa	Hevea nitida Muel. Arg.	4	26	5	25	60
88 tornillo	Cedrelinga cateniformis (Ducke) Ducke.	1	10	3	7	21
89 trichilia	Trichilia septentrionalis C.Dc.	1	0	0	2	3
90 tulipay	Claricia rasemosa R. et P.	2	28	4	8	42
91 tulipay blanco	Brosinum potabile Ducke.	1	0	0	1	2
92 tulipay negro	Claricia sp.	0	0	0	1	1
93 ubos	Spondias mombim L.	3	1	0	0	4
94 ucshaquiro	Aparisthmiun cordatum (Juss.) Baill	2	6	9	1	18
95 uvilla hoja partida	Pouroma bicolor C.Martires.	2	0	0	1	3
96 uvilla minor	Pouroma guianensis Aubl.	50	20	21	23	114
97 vitex	Vitex pseudolea Rusby.	2	0	0	0	2
98 yacushapana	Terminalia oblonga Ducke.	5	5	2	1	13
	TOTAL	680	605	597	556	2437

Cuadro 12. Incremento medio anual por PPM.

Parcelas	AB 1	AB 2	IMA (%)
PPM 1	24.561	25.242	2.734
PPM 2	26.286	27.197	3.407
PPM 3	21.135	21.792	3.061
PPM 4	27.686	28.237	1.971
Media	25.424	27.717	2.898

Cuadro 13. Mortalidad y reclutamiento por PPM.

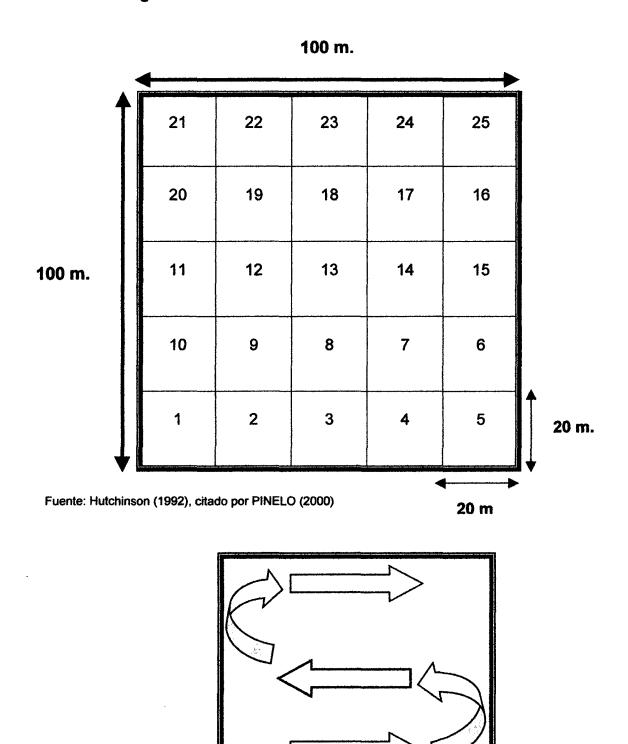
PPM	% de Mortandad	% de Reclutamiento	
PPM 1	0.517	1.775	
PPM 2	0.291	2.174	
PPM 3	0.445	2.551	
PPM 4	0.393	0.901	
Mediana	0.419	1.975	

Cuadro 14. Calidad de fuste por PPM.

N° de Código	Calidad de fuste de los árboles (%)			
	PPM 1	PPM 2	PPM 3	PPM 4
1	5	7	5	8
2	83	80	88	86
3	1	1	2	2
4	6	9	3	3
5	4	3	2	1
6	1	0	0	0
Total	100	100	100	100

Cuadro 15. Forma de copa por PPM.

N° de Código	Forma de copa (%)			
	PPM 1	PPM 2	PPM 3	PPM 4
1	0.4	0.3	4	1
2	6	9	25	14
3	45	50	43	49
4	32	31	21	23
5	9	· 8	5	9
6	5	1	1	2
7	2	2	1	1
Total	100	100	100	100


Cuadro 16. Iluminación de copa por PPM.

N° de Código	lluminación de copa (%)				
	PPM 1	PPM 2	PPM 3	PPM 4	
1	11	9	18	14	
2	11	11	18	12	
3	15	18	21	14	
4	44	39	30	32	
5	20	23	13	28	
Total	100	100	100	100	

Cuadro 17. Presencia de lianas por PPM.

N° de _ Código	Presencia de lianas (%)			
	PPM 1	PPM 2	PPM 3	PPM 4
1	46	64	64	67
2	15	8	7	6
3	1 -	1	1	0
4	7	6	7	5
5	20	14	11	12
6	7	2	2	1
7	1	2	3	2
8	2	2	5	6
9	1	0	1	1
Total	100	100	100	100

ANEXO 2: Figuras.

Flujo de evaluación

Fuente: Elaboración propia

Figura 8. Distribución y dimensiones de las PPM y sub parcelas

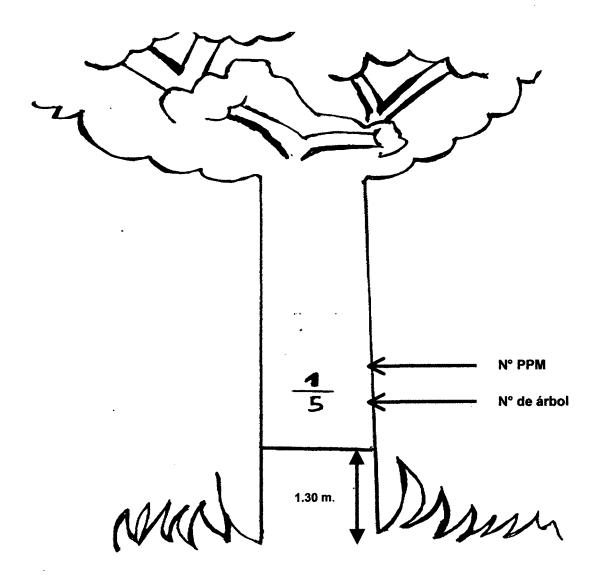


Figura 9. Codificación del árbol (> 10 cm dap)

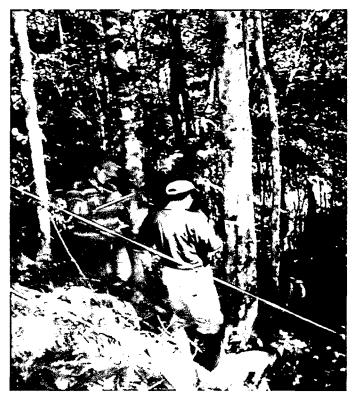


Figura 10. Codificación del árbol individual (>10 cm dap)

Figura 11. Evaluación de las especies forestales (> 10 cm dap)

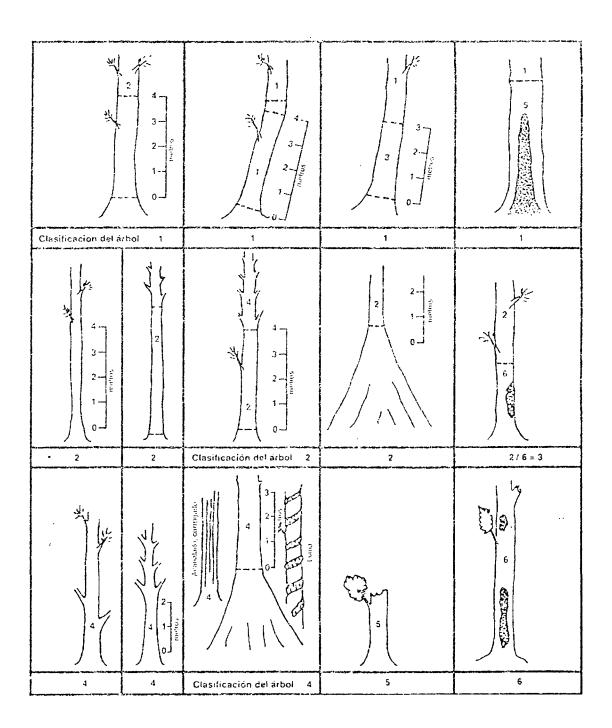


Figura 12. Características para evaluar calidad de fuste

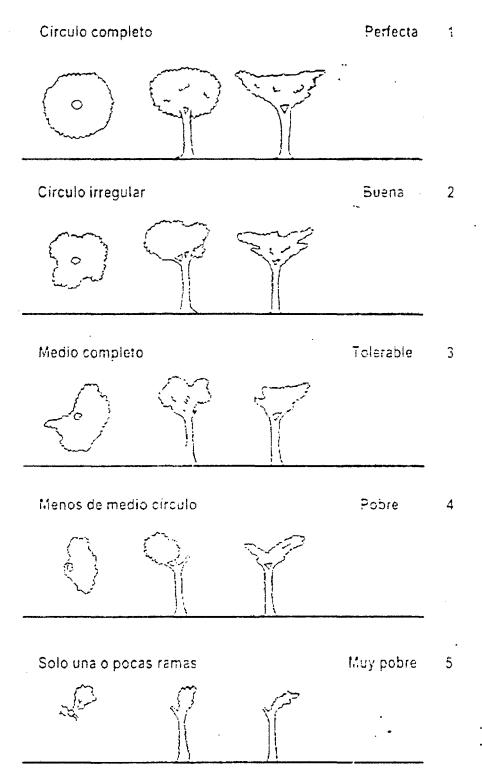


Figura 13. Características para la calificación de la copa

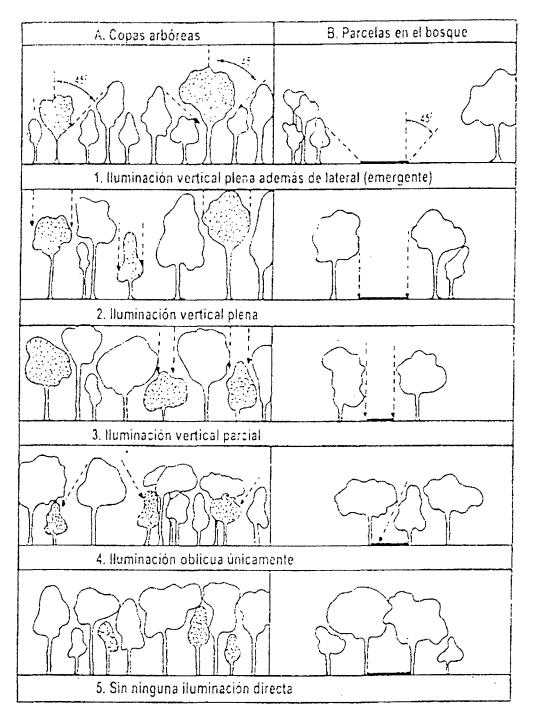
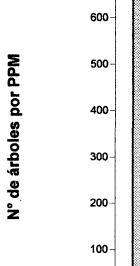
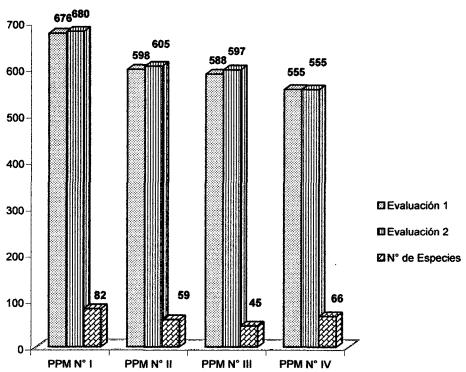
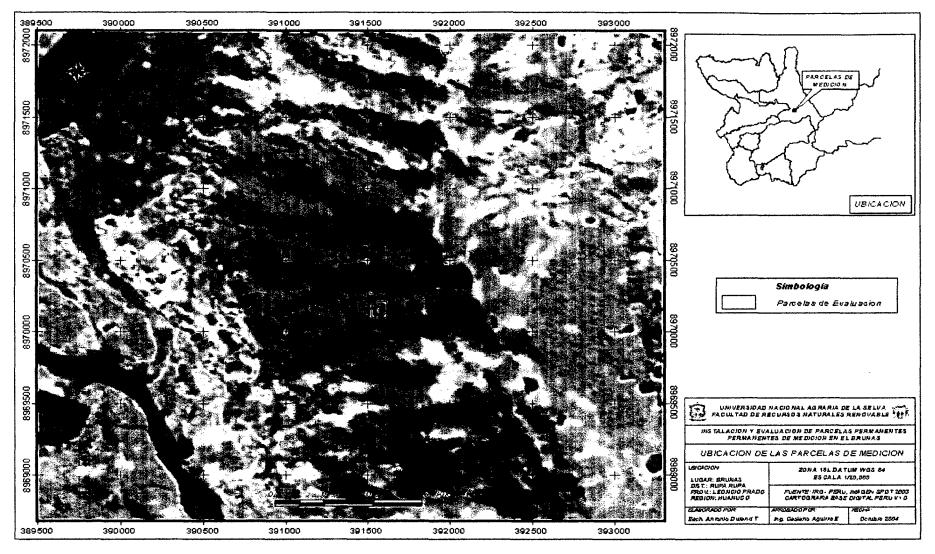




Figura 14. Características para calificar la iluminación de la copa



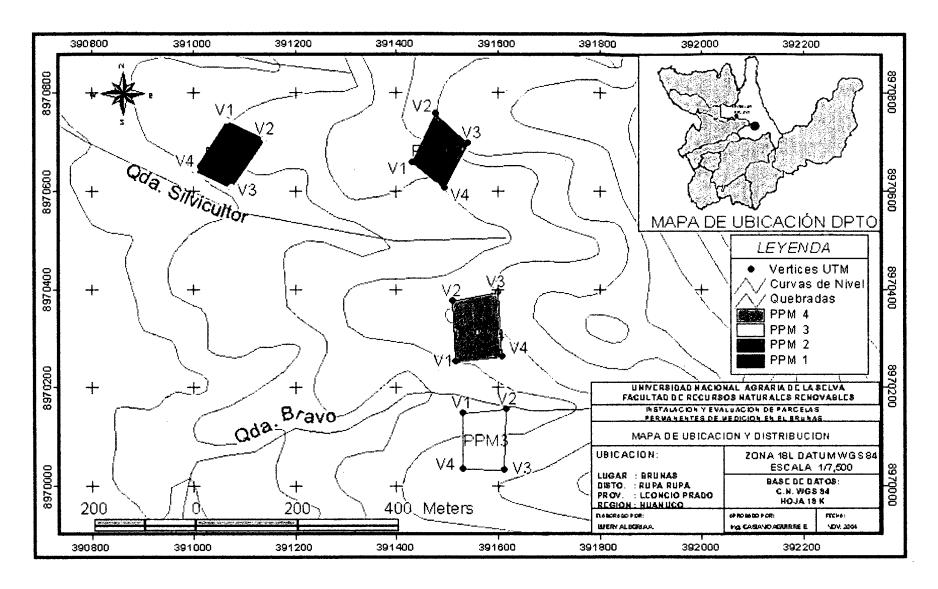

Parcelas Permanentes de Medición

Figura 15: Total de árboles y especies por parcelas

ANEXO 3: Otros.

Mapa de Ubicación de las Parcelas Permanentes de Medición BRUNAS.

Mapa de Distribución de las Parcelas Permanentes de Medición BRUNAS.

UNIVERSIDAD NACIONAL AGRARIA DE LA SELVA Tingo Maria – Perú

FACULTAD DE RECURSOS NATURALES RENOVABLES

CERTIFICADO

EL ESPECIALISTA EN DENDROLOGIA TROPICAL DE LA FACULTAD DE RECURSOS NATURALES RENOVABLES, QUE SUSCRIBE, EXPIDE EL SIGUIENTE:

CERTIFICA:

Que, se ha realizado la identificación de especies forestales de la tesis "ESTABLECIMIENTO Y EVALUACIÓN DE PARCELAS PERMANENTES DE MEDICIÓN EN EL BOSQUE RESERVADO DE LA UNIVERSIDAD NACIONAL AGRARIA DE LA SELVA, TINGO MARÍA", del Bachiller: **DAVID BLAS JAIMES**

Se expide el presente a solicitud del interesado para los fines pertinentes.

Tingo María, 29 de noviembre del 2004.

Ing° Warreh Rios García

UNIVERSIDAD NACIONAL AGRARIA DE LA SELVA Tingo María – Perú

FACULTAD DE RECURSOS NATURALES RENOVABLES BODAS DE PLATA

GABINETE DE METEOROLOGIA Y CLIMATOLOGIA

Av. Universitaria s/n. Tef: (062) 561647 - fax (062) 561156

"Año del Estado de Derecho y de la Gobernabilidad Democrática"

Tingo María, 02 de Diciembre del 2004

DATOS CLIMATOLOGICOS DE LA ESTACION PRINCIPAL (CP.) "Tingo María"

MES:

Diciembre

AÑO

2002

TEMPERATURA PROMEDIO:

25.00 °C

PRECIPITACION:

483.60 mm

HUMEDAD RELATIVA:

87%

REFERENCIA AL RECIBO Nº 001-0027578

Intersidad Maciera: Agratio de la Selve

Fac. Recursos sacuraira escavables Cabiness de Mesogrologia y imasologis

Lucis sensigns in and Suarest lag. 44, Se-