RECUPERACIÓN DE SUELO DEGRADADO MEDIANTE EL ESTABLECIMIENTO DE CUATRO ESPECIES DE PAPILIONACEAE EN EL SECTOR SUPTE SAN JORGE, TINGO MARÍA

Tesis

Para optar el título de:

INGENIERO EN RECURSOS NATURALES RENOVABLES MENCIÓN CONSERVACIÓN DE SUELOS Y AGUA

VANESSA ORIANA LLAMOJA RIOS

Tingo María – Perú

2014
DEDICATORIA

A Dios por darme todo lo que tengo en esta vida y a mi madre Nancy Matilde Ríos del Águila por su amor y apoyo incondicional.
AGRADECIMIENTO

A mi alma mater, la Universidad Nacional Agraria de la Selva (UNAS) por brindarme la oportunidad de forjarme como profesional.

A mi asesor: El Ing. Msc Eber Cardenas Rivera

A mis amigos: Brady Pereira, Juan Vargas, Elia Infante, Marivel Llactas y Silvana Cespedes por su amistad y apoyo durante mi formación profesional.
ÍNDICE GENERAL

I. INTRODUCCIÓN .. 1

II. REVISIÓN DE LITERATURA .. 4

2.1. La fertilidad de los suelos tropicales ... 4

2.1.1. Reacción del suelo (pH) ... 4

2.1.2. La materia orgánica ... 5

2.1.3. El nitrógeno del suelo .. 6

2.1.4. El fósforo del suelo .. 7

2.2. Degradación de los suelos ... 9

2.2.1. Cultivo intensivo de la coca ... 9

2.2.2. Sobrepastoreo y/o Subpastoreo ... 10

2.3. Trabajos relacionados a recuperación de suelos con cobertura vegetal 12

2.4. Aspectos generales del kudzú (Pueraria phaseolides) .. 14

2.5. Aspectos generales del centrosema (Centrosema macrocarpum) 15

2.6. Aspectos generales de la mucuna (Mucuna pruriens) 16

2.7. Aspectos generales de la canavalia (Canavalia ensiformis) 17

2.8. Macrofauna del suelo ... 18

2.8.1. Clasificación de la macrofauna edáfica y su importancia funcional 20
2.9. Los Abonos orgánicos ...22
2.9.1. Humus de lombriz...23

III. MATERIALES Y MÉTODOS ..26
3.1. Descripción de la zona de estudio ..26
3.2. Materiales, insumos y equipos ..28
3.3. Variables a evaluar ...29
3.4. Metodología ..29
3.5. Diseño estadístico ...33

IV. RESULTADOS ...37
4.1. Variación de pH, MO, N, P y macrofauna en suelos degradados
 bajo efecto de cobertura con Pueraria phaseoloides, Centrosema
 macrocarpum, Mucuna pruriens y Canavalia ensiformis37
4.2. Biomasa de Pueraria phaseoloides, Centrosema macrocarpum,
 Mucuna pruriens y Canavalia ensiformis establecida en suelos
degradados ..38
4.3. Cobertura de Pueraria phaseoloides, Centrosema macrocarpum,
 Mucuna pruriens y Canavalia ensiformis establecida en suelos
degradados ..40
4.4. Diversidad de macrofauna en diferentes tratamientos establecidos
 en suelos degradados ..43

V. DISCUSIÓN ..45
VI. CONCLUSIONES ...49

VII. RECOMENDACIONES ...50

VIII. ABSTRACT ...51

IX. REFERENCIAS BIBLIOGRÁFICAS ..53

X. ANEXO ...62
ÍNDICE DE CUADROS

Cuadro 1. Tratamientos en la investigación. ...33

Cuadro 2. Análisis de varianza...35

Cuadro 3. Variación de elementos y macrofauna en suelos degradados donde se establecieron cobertura. ...37

Cuadro 4. ANVA para la biomasa de las PAPILIONACEAE sembradas en suelos degradados..38

Cuadro 5. Comparación de promedios de biomasa (Duncan) de PAPILIONACEAE sembradas en suelos degradados...39

Cuadro 6. ANVA para el porcentaje de cobertura de diferentes PAPILIONACEAE sembradas en suelos degradados...41

Cuadro 7. Comparación de promedios (Duncan) sobre la cobertura en el área sembrada..42

Cuadro 8. Diversidad de especies de macrofauna bajo cobertura de PAPILIONACEAE...43

Cuadro 9. Cobertura y biomasa acumulada en PAPILIONACEAE establecidas en suelos degradados...65

Cuadro 10. Macrofauna del suelo bajo efecto de cobertura de PAPILIONACEAE ...66

Cuadro 11. Índice de diversidad de especies en el tratamiento Testigo67
Cuadro 12. Índice de diversidad de especies en Canavalia ensiformis67
Cuadro 13. Índice de diversidad de especies en Pueraria phaseoloides67
Cuadro 14. Índice de diversidad de especies en Mucuna pruriens..............68
Cuadro 15. Índice de diversidad de especies en Centrosema macrocarpum ...68
Cuadro 16. Calculo de datos meteorológicos...72
ÍNDICE DE FIGURAS

Figura 1. Diseño de distribución de los tratamientos en la parcela. 35

Figura 2. Biomasa presentada en PAPILIONACEAE sembradas en suelos degradados. ... 40

Figura 3. Cobertura alcanzada en PAPILIONACEAE sembradas en suelos degradados. ... 42

Figura 4. Índice de diversidad de especies de macrofauna alcanzado bajo cobertura de PAPILIONACEAE. ... 44

Figura 5. Realizando la siembra de las especies de PAPILIONACEAE en la parcela de investigación. ... 63

Figura 6. Vista panorámica de la parcela de investigación. 63

Figura 7. Realizando el muestreo de cobertura en una parcela de Centrocema macrocarpum. ... 64

Figura 8. Realizando el muestreo de macrofauna del suelo. 64
La deforestación en la amazonia peruana ha ido incrementando en estos últimos años, esto se debe en gran medida a la tradicional agricultura migratoria, que se ve fortalecido por el cultivo de coca cuya conducción depende de la practica destructiva de la tala y quema de arboles. Ante este contexto la investigación busca una alternativa mediante el uso de coberturas con PAPILIONACEAE en el proceso de recuperación del suelo. La investigación se realizó en el distrito de Rupa Rupa, provincia Leoncio Prado; entre los meses de abril de 2013 a abril de 2014. El objetivo fue determinar la influencia de las PAPILIONACEAE (*Pueraria phaseoloides*, *Centrosema macrocarpum*, *Mucuna pruriens* y *Canavalia ensiformis*) establecidas en suelos degradados. Para la evaluación se usó el Diseño en Bloques completamente al Azar, con 5 tratamientos, incluido el testigo. Se realizó el muestreo y análisis de suelos al inicio y al final del periodo de investigación; asimismo, se determinó biomasa y cobertura de PAPILIONACEAE y diversidad de especies de macrofauna. Las coberturas con PAPILIONACEAE influyeron significativamente en el proceso de recuperación del suelo, al cabo de un año mostraron un incremento en el contenido de pH. *Centrosema macrocarpum* fue la especie que proporcionó mayor MO y N, con un incremento de 0.86%, seguido de *Pueraria phaseoloides* 0.54%; mientras que la *Mucuna pruriens* proporcionó el mayor incremento en P con un 5.07%, seguido de *Canavalia ensiformis* con un 0.86%. Asimismo, *Canavalia ensiformis* proporcionó la mayor
densidad de macrofauna con un total de 171 ind.m\(^{-2}\), seguido de kudzu con 117 ind.m\(^{-2}\). *Centrosema macrocarpum* proporcionó mayor biomasa con 646.2 g, seguido de *Pueraria phaseoloides* con 618.78 g; asimismo, esta última proporcionó el mayor porcentaje de cobertura, alcanzando el 100%, seguido por *Centrosema macrocarpum* con 96.37%. La mayor diversidad de especies se encontró en suelos bajo cobertura de *Centrosema macrocarpum* (H'\(=1.79\)), seguido por *Pueraria phaseoloides*.
I. INTRODUCCIÓN

Las áreas de suelos degradados en la ceja de selva en las Zonas de Aguaytía, Huallaga Alta y Huallaga Central del Perú, se estima en 110,500 ha, causadas principalmente por la producción de coca y otras prácticas agropecuarias dando como resultado suelos muy agotados en todos los nutrientes esenciales con suelos muy ácidos y con toxicidad de aluminio.

En las colinas que rodean a la ciudad de Tingo María, existe grandes áreas degradadas (se estima 16,000 ha) con predominancia de plantas indicadoras de suelos pobres y escasa actividad agropecuaria o forestal por parte de los agricultores (PROAMAZONIA, 2003). Estos suelos durante la década de los 80’s hasta 1994, eran cocaleras y la práctica de tumba y quema antes de establecer, seguido de las altas temperaturas y precipitación causaron la degradación completa en términos químicos y físicos.

Para la recuperación de estos suelos existen limitadas posibilidades a través de sistemas naturales; es necesario favorecer su recuperación a través de aplicación de algunas enmiendas para corregir el problema de acidez, toxicidad de aluminio y escasez de los nutrientes esenciales, así como el establecimiento de cobertura vegetal; de lo referido
surgen interrogantes como ¿Cuál será el comportamiento de pH, MO, N, P, y macrofauna en suelos degradados bajo el establecimiento de coberturas?

En tal sentido establecer coberturas con PAPILIONACEAE en suelos degradados como Pueraria phaseoloides es favorable debido a que posee buenas cualidades de adaptación y persistencia en suelos con limitaciones.

1.1. Objetivos

1.1.1. General

- Determinar la influencia de las PAPILIONACEAE (Pueraria phaseoloides, Centrosema macrocarpum, Mucuna pruriens, Canavalia ensiformis) establecidas en suelos degradados en el sector Supte San Jorge, Tingo María.

1.1.2. Específicos

- Evaluar la variación de pH, MO, N, P y densidad de macrofauna en suelos degradados bajo el efecto de coberturas.

- Determinar la biomasa de coberturas establecidos en suelos degradados del sector Supte San Jorge.

- Calcular el porcentaje de cobertura establecido en suelos degradados del sector Supte San Jorge.
- Determinar la diversidad de especies de macrofauna bajo diferentes coberturas establecidos en suelos degradados del sector Supte San Jorge.
II. REVISIÓN DE LITERATURA

2.1. La fertilidad de los suelos tropicales

Según SÁNCHEZ e ISABELL (1979), citado por BOLIVAR et al. (2000), el 55% (822 millones de hectáreas) de los suelos de América tropical son considerados de baja fertilidad (oxisoles y ultisoles), los cuales presentan limitaciones principalmente químicas para la producción de cultivos, incluyendo deficiencias de los nutrientes como: P, N, K, S, Ca, Mg y Zn.

2.1.1. Reacción del suelo (pH)

WADSWORTH (2000) reporta que la formación de suelos en los trópicos está dada por la meteorización y la lixiviación proveniente de la combinación de altas precipitaciones y temperaturas, que a lo largo produce suelos ácidos con abundante concentración de H⁺, Al+++ y Fe+++; con una pobre saturación de bases, debido a la reacción del agua con el suelo.

Según ZAVALETA (1992), la acidez del suelo depende del material parental del suelo, su edad, forma y los climas actual y pasado pueden ser modificado por el manejo del suelo. La acidez del suelo está asociada con varias características, cómo el bajo nivel de calcio y magnesio intercambiables, el bajo porcentaje de saturación de bases, alta proporción de elementos tóxicos
como aluminio intercambiable y manganeso; menor actividad de muchos microorganismos del suelo, llevando en casos extremos a una acumulación de la materia orgánica, a una menor mineralización y a una más baja disponibilidad de nitrógeno, fósforo y azufre.

ZAVALETA (1992) menciona que los iones como el Na\(^+\), K\(^+\), Ca\(^{++}\) y Mg\(^{++}\), tiene baja afinidad de adsorción por tener iones monovalentes, que en comparación con el Al \(^{+++}\), Fe\(^{+++}\) y Mn\(^{++}\) que son iones trivalentes y divalentes, que tienen una fuerte adsorción, ellos reaccionan con el agua formando hidróxidos y liberando la concentración de H\(^+\) para incrementar la acidez.

2.1.2. La materia orgánica

BRACK y MENDIOLA (s.d) sostienen que la materia orgánica hacia la formación del humus, es una fuente importante de nutrientes, a través de los procesos de descomposición con la participación de bacterias y hongos absorben nutrientes disponibles los pone a disposición de las plantas. Fijan nitrógeno (NO\(_3^–\), NH\(_4^+\)), fósforo (H\(_3\)PO\(_4\)), calcio (Ca\(^{++}\)), magnesio (Mg\(^{++}\)), potasio (K\(^+\)) y sodio (Na\(^+\)).

Según Brack (1992), citado por VARGAS (1997), indica que los suelos de la selva mantienen su fertilidad, mientras exista un suelo vegetal que los alimente con materia orgánica. Asimismo, manifiesta que la deforestación produce una interrupción del ciclo de nutrientes, perdiendo su capacidad de autoalimentarse.
Según FAO (1997), la disponibilidad de los nutrimentos es fundamental para el desarrollo de los cultivos. El contenido de nutrimentos del suelo depende del material original del suelo y su proceso de formación. Una disminución del 1% en el contenido de materia orgánica del horizonte superficial (0 - 20 cm) representa una pérdida de 1100 Kg de N y 110 Kg de P por hectárea.

2.1.3. El nitrógeno del suelo

Según FASSBENDER y BORNEMISZA (1987), las formas asimilables de nitrógeno por las plantas son la nítrica y la amoniacal. La mayor reserva de nitrógeno se encuentra en la atmósfera. Este contenido atmosférico se aprovecha en parte a través de los procesos microbianos como la fijación de nitrógeno.

Según CEPEDA (1991), los microorganismos simbiontíticos contribuyen con la mayor proporción en la fijación de nitrógeno. La fijación simbiótica ocurre generalmente en la rizósfera, en los primeros días de la inoculación, las bacterias se alimentan exclusivamente de la planta hospedera, se reproducen rápidamente y empieza la fijación de nitrógeno molecular, el que inicialmente es usado en su metabolismo al aumentar la producción comienza a ceder nitrógeno a la planta; en estados avanzados hasta un 90 % del nitrógeno fijado cede a la planta hospedera.

Según FASSBENDER y BORNEMISZA (1987), el mecanismo de fijación es complicado y aún no se conoce íntegramente las formas finales de la
síntesis de nitrógeno en la fijación; aminoácidos como el ácido glutámico y el aspártico, que participan en la formación de proteínas vegetales. Además de los factores propios de la simbiosis de la bacteria y de su planta hospedera, existen otros que influyen sobre la fijación de nitrógeno; entre ellos el pH y los nutrimentos; la temperatura, el régimen hídrico y la aireación.

2.1.4. El fósforo del suelo

FORJAN (2003) menciona que el fósforo se encuentra en los suelos tanto en forma orgánica ligada a la materia orgánica, como inorgánicas que es la forma en que absorben los cultivos.

Según FASSBENDER Y BORNEMISZA (1987), todos los fosfatos son derivados del ácido fosfórico (H_3PO_4) y se encuentra en dos formas generales: orgánicos e inorgánicos; el fósforo orgánico se encuentra como: fosfolípidos, ácidos nucleicos y fosfato de inocitol; el fósforo inorgánico se encuentra principalmente como fosfatos de Ca, Al, Fe, y Mn predominando en suelos ácidos; estos suelos además de ser normalmente pobres en fósforo, tienden a retener o fijar este elemento en formas no solubles, difícilmente asimilables por las plantas.

El fósforo posee baja solubilidad causante de la deficiencia en la disponibilidad de la planta, que las absorben en forma de fosfatos derivados del ácido fosfórico. El contenido total de fósforo también depende de la materia orgánica en suelos tropicales, al aumentar predominan los fosfatos orgánicos y se obtiene una mayor cantidad de fósforo total; la participación del fósforo total
generalmente varía entre 25 al 75 %. Algunos factores como la temperatura, la precipitación, la acidez y la actividad biológica de los suelos determinan la participación de las fracciones orgánicas e inorgánicas en el fósforo total.

Los equilibrios de reacción entre las distintas formas de fósforo dependen de los coloides y minerales presentes en el suelo, el pH, la actividad microbiológica, la presencia de enzimas, ácidos orgánicos y la intensidad de la demanda del nutriente.

El fósforo desempeña un papel importante en la fotosíntesis y la respiración, en el almacenamiento y transferencia de energía, en la división y crecimiento celular y otros procesos que se llevan a cabo en la planta. Además promueve la rápida formación y crecimiento de las raíces. El fósforo mejora la calidad de las frutas, hortalizas y granos; además es vital para la formación de la semilla. El fósforo está involucrado en la transferencia de características hereditarias de una generación a la siguiente.

Es importante mencionar que si el aluminio se une al fósforo, las plantas no pueden absorberlo. El suelo no necesita mucho fósforo para satisfacer la demanda de las plantas, pero sí necesitan de él las leguminosas, para producir las enzimas que le permita absorber nitrógeno del aire.

La fijación del fósforo puede ser el problema más serio en la rehabilitación de los suelos enfermos que sufren el síndrome de acidez, particularmente en suelos ricos en barro (arcilla).
La disponibilidad de fósforo es más importante en el caso de leguminosas, que son plantas ideales para regenerar el suelo con materia orgánica como parte de los abonos verdes.

Al aumentar el fósforo disponible, la población microbiana se desarrolla considerablemente, ocasionándolo la inmovilización del fósforo.

2.2. Degradación de los suelos

Se entiende por la degradación de los suelos cualquier proceso que conduzca a una reducción gradual o acelerada, temporal o permanente, de su capacidad productiva, o al incremento de los costos de producción. La degradación no solo depende de la intervención del hombre, sino al clima y de la naturaleza de los suelos (PLA, 1990).

2.2.1. Cultivo intensivo de la coca

DOUROJEANNI (1987) refiere que el cultivo de la coca (*Eritroxylon coca*) está asociado a la intensa migración poblacional y a la deforestación, atraído por la economía de la coca, ocasionando la depredación de la flora y fauna.

Para Cabieses (1992), citado por VARGAS (1997), el crecimiento catastrófico del cultivo ilegal de la coca, debido a la economía monstruosa que representa este cultivo, está ocasionando daños ecológicos; así como la extinción de los recursos genéticos, la alteración del régimen hídrico, el
deterioro de la capa superficial del suelo.

MUÑIZ (1988) reporta que el cultivo de la coca por su naturaleza se desarrolla de preferencia en lugares de fuerte gradiente, habiéndose propiciado la utilización de tierras de protección para éstos fines. Los suelos degradados son invadidos por malezas heliófitas, que se caracterizan por crecer en suelos empobrecidos.

2.2.2. Sobrepastoreo y/o Subpastoreo

El sobrepastoreo reduce la capacidad de rebrote y el vigor de crecimiento de las especies forrajeras por agotamiento de las reservas de nutrientes y remoción de las yemas; factores que favorecen la invasión de especies no deseables, la compactación y la erosión del suelo.

Por su parte el subpastoreo, definido como la consecuencia de un pastoreo mal dirigido, que permite que las hojas se envejezcan y se sequen en la macolla al no ser consumidas, favorece la acumulación de material muerto que contribuye a la proliferación y ataque de insectos en las praderas y a la perdida de biomasa tanto en volumen como en calidad (ECHEVERRÍA, 2005).

Entre las alternativas a tener en cuenta para la rehabilitación de una pradera degradada por sobrepastoreo o subpastoreo, se encuentran:

- Determinar y ajustar la capacidad de carga animal de la pradera.

- Definir los períodos de ocupación y descanso.
- Dividir la pradera para establecer un sistema de pastoreo mejor.

- Fertilizar con el fin de recuperar más rápido los forrajes y obtener mayor cantidad de biomasa.

- Aplicar riego y fertilización en las épocas de mínima precipitación para acortar el tiempo de recuperación de los forrajes.

2.2.2.1. Baja fertilización o pérdida de fertilidad del suelo

En el trópico bajo bosque húmedo, las deficiencias nutricionales del suelo en fósforo, nitrógeno y magnesio son el principal factor de desestabilización de las praderas; éstas son de poco vigor y calidad por lo que no compiten con la invasión de especies no deseables. La pérdida de fertilidad del suelo se puede dar por lavado de nutrientes debido a la cantidad de lluvias, incrementándose el problema cuando existe sobrepastoreo o compactación. De igual forma, la pérdida de nutrientes del suelo en pastoreo se produce por el consumo de ellos en el forraje y la devolución parcial al suelo, los nutrientes retenidos por el animal se transforman en leche y carne y en las heces y orina que se depositan en potreros, caminos, corrales y establos, igualmente, se pueden encontrar pérdidas de nutrientes por el arrastre de aguas de escorrentía (Paladines, 2002; citado por ECHEVERRÍA, 2005).

Con la práctica de fertilización se buscan primordialmente dos objetivos: primero, corregir las deficiencias de nutrientes y desbalances que el suelo presenta con respecto a los requerimientos de la especie forrajera y
segundo, el mantenimiento posterior donde se busca devolver al suelo los nutrientes que la especie forrajera extraiga.

Entre las alternativas para corregir la falta o pérdida de fertilidad de los suelos, están:

- Corregir las deficiencias del suelo, a partir de análisis de suelo para establecer desbalances nutricionales que se presentan y determinar el tipo y la cantidad de fertilizante.

- Establecer PAPILONACEAE en la pradera que fijen nitrógeno atmosférico y formen nódulos en el suelo.

- Establecer arbóreas, preferiblemente PAPILONACEAE y forrajeras para que aporten biomasa para la alimentación animal y enriquezcan el suelo.

2.3. **Trabajos relacionados a recuperación de suelos con cobertura vegetal**

VARGAS y VALDIVIA (2005) establecieron PAPILONACEAE como *Centrosema macrocarpum, Pueraria phaseoloides* y *Arachis pintoi* en suelos degradados en la provincia de Leoncio Prado por el cultivo de coca. Luego de tres años, la textura del suelo ha variado de pesada a media, el pH de fuertemente ácido pasó a medianamente ácido, la materia orgánica ha disminuido (*Arachis pintoi* aportó menor cantidad, similar al testigo). El fósforo
pasó de bajo a normal y el potasio de bajo a medio. La diversidad de familias de macroinvertebrados se incrementó de siete a veintitrés, y la cantidad de organismos de 37 millones a 58 millones/ha. *Centrosea macrocarpum* incorporó al suelo aproximadamente 1.6 t/ha/año de materia seca, *Arachis pintoi* 0.49; y *Pueraria phaseoloides* 1.30. Esta última alcanzó una cobertura de 99.40 %, mientras *Arachis pintoi* 75.60% (menor a todas).

PÉREZ *et al.* (2009) mencionan que la capacidad de retención de P del suelo (CRP) limita la disponibilidad de este elemento para las plantas y puede influir sobre la capacidad de éstas para disolver y utilizar P de rocas fosfóricas (RF). Comparó la capacidad de cuatro especies de Centrosea para disolver y utilizar P de la roca fosfórica Riecito y estudió la influencia de la CRP del suelo sobre la disolución de la roca fosfórica Riecito y utilización del P por Centrosea. Utilizaron tres suelos ácidos con características diferentes, identificados como Espino, Iguana y Pao. La CRP de los suelos lo determinaron utilizando el modelo de isotermas de adsorción de P de Langmuir. En ensayo de invernadero, se comparó la eficiencia de cuatro especies de Centrosea (*Centrosea brasillianum, Centrosea molle, Centrosea macrocarpum y Centrosea rotundifolium*) para utilizar P en un suelo de baja CRP, con cinco dosis de P (0, 15, 30, 45 y 60 mg/kg) proveniente de la RF Riecito. Luego, de seleccionar la especie de Centrosea más eficiente, ésta se evaluó en tres suelos con diferente CRP y tres tratamientos de P (0, 50 y 75 mg/kg) proveniente de la RF Riecito. *Centrosea brasillianum* presentó la mayor eficiencia para utilizar P de la RF Riecito en el suelo con baja CRP. A medida que aumentó la capacidad de retención de P del suelo,
aumentó la disolución de la roca fosfórica, pero no favoreció el crecimiento de
la biomasa aérea y absorción de P por el cultivo.

ALEGRE (2002) realizó parcelas experimentales para el control de
la erosión sobre una pendiente de más del 50 % (Cuadro 1), los tratamientos
con vetiver todos en surcos de contorno en hileras dobles (tres bolillo a 0.50 x
.0 5 m) a 4 m de distancia fueron: 1) vetiver, 2) vetiver + cultivos 3) vetiver con
Inga edulis + cultivos 4) vetiver con *Gliricidia sepium* + cultivos 5) vetiver con
Erythrina spp. + cultivos y 6) parcela sin vegetación.

COULTAS et al. (1996) mencionan que el uso de leguminosas
como cultivos de cobertura representa una alternativa para proteger al suelo de
la erosión y aportan nutrientes al suelo. Del mismo modo; BLANCHART et al.
(2006), indica que el establecimiento de cultivos de cobertura, involucra una
adición de materia orgánica fresca al suelo, la cuál es aprovechada por los
organismos edáficos como fuente de nutrientes.

2.4. Aspectos generales del kudzú (*Pueraria phaseolides*)

Originaria del sureste de Asia, pertenece a la familia
PAPILIONACEAE, de crecimiento prostrado o enredadera, produce estolones
fuerte que pueden llegar a medir más de 10m de longitud, sus nudos y entre
nudos forman raíces abundantes , la planta forma una cubierta densa de más
de 1m de altura, las raíces pueden penetrar hasta 1.5 m de profundidad a dos
años de establecida, posee tallos de color café, cubiertos de abundante
pubescencia; sus hojas trifoliadas, con foliolos largos de 5 a 12 cm de longitud
y 10cm de ancho, las flores son en racimos, purpuras y las vainas rectas de siete a ocho centímetros con semillas de color café de tres milímetros de largo, es de buena palatabilidad (JUAREZ, 2003).

Así mismo señala que posee lento establecimiento y baja resistencia al pastoreo continuo. Se adapta bien a suelos ácidos con pH menores de 4.5 de textura arcillosa.

CRESPO et al. (2001) establecen que la composición química de la hojarasca de Pueraria phaseoloides contiene 2.66% de nitrógeno, 0.38% de fósforo y 0.26% de potasio.

2.5. Aspectos generales del centrosema (Centrosema macrocarpum)

Es una PAPILIONACEAE enredadera perenne, herbácea de tallos tenues y ligeramente erizo-pubescentes, de crecimiento rastrero, pero en presencia de tutores su hábito es voluble; hojas alternas trifoliadas con estípulas persistentes triangulares y estipelas finas; foliolos glabros o escasamente pubescentes, de formas ovados, oblongolanceolados, u ovalolanceolados, encontrándose considerable variación en tamaño y forma entre ecotipos, y frecuentemente de la misma planta; foliolos atenuados en la punta o algo acuminados; peciólulos cortos y algo pubescentes o pubérulos; pecíolo y raquis acanalados y pubescentes (BARBOSA-FEVEREIRO, 1977).
Por otro lado, el *Centrosema macrocarpum* (Bentham) es una PAPILIONACEAE de crecimiento parecido al kudzú. Se establece por semilla sexual.

Por su hábito de crecimiento necesita espaldera para producir semilla. Se asocia fácilmente con POACEAEs de crecimiento erecto y decumbente como *Brachiaria brizantha* y *B. decumbens*, respectivamente. Puede producir entre 900 y 1600 kg de materia seca por hectárea cada 60 días.

Su contenido de proteína varía entre 24 a 30 %, su digestibilidad de 55 a 65 %. Es muy consumida por bovinos y equinos (GÓMEZ y VELÁSQUEZ, 1999).

2.6. Aspectos generales de la mucuna (*Mucuna pruriens*)

Mucuna pruriens, es una leguminosa trepadora perteneciente a la familia PAPILIONACEAE, proveniente del sur de China y del este de la India. Es autógama y por tanto es rara su contaminación natural (DUKE, 1981).

Los ciclos biológicos de esta especie, varían entre 100 y 300 días hasta la cosecha de la vaina, posee una semilla de color negro y la planta presenta una alta resistencia a factores abióticos adversos, como la sequía, la escasa fertilidad y la elevada acidez del suelo; sin embargo se desarrollan deficiéntemente en zonas muy frías y húmedas. (DUKE, 1981; HAIRIAH, 1992; LOBO BURLE *et al*, 1992).
El género *Mucuna spp.* se desarrolla mejor en condiciones de calor y humedad, por debajo de los 1500 m.s.n.m y en zonas con precipitaciones abundantes. Produce una cantidad considerable de hojas antes de llegar a su madurez fisiológica, las cuáles se pudren gradualmente formando un lecho de hojarasca bajo la planta que crece activamente. Las cantidades de biomasa aérea varían entre 5 Mg.ha-1 y 12 Mg.ha-1 de materia seca, y llega a producir hasta 1 Mg.ha-1 de raíces secas (DUGGAR, 1989; CAMAS, 1991; CHÁVEZ, 1993).

La producción de vainas es variable y dependiente de las condiciones ambientales, pero puede llegar a 2 Mg.ha-1. Como la mayoría de las leguminosas, *Mucuna pruriens*, tiene la capacidad de fijar el Nitrógeno atmosférico mediante una relación simbiótica con microorganismos del suelo. El Nitrógeno es convertido por los rizobios de las raíces de la planta en una forma asimilable, que se almacena en las hojas, tallos y semillas; convirtiendo a la planta en una fuente eficiente de Nitrógeno (BUCKLES, 1998).

2.7. Aspectos generales de la canavalia (*Canavalia ensiformis*)

Planta vigorosa herbácea anual trepadora o arbusto leñoso, pertenece a la familia de las PAPILIONACEAE, trifoliolada, folíolos aovados o elípticos, muy acuminada en el ápice, más o menos cuneiforme en la base, hasta de 20 cm de largo y 10 cm de ancho, lisa, con 6 o 7 pares de nervios laterales; con un promedio de hasta 15 ramificaciones que se forman a partir del tallo central. Escasas flores rosas, malvas o blancas, con base roja sobre
un eje robusto de unos 2.5cm de largo. Vaina variable, ensiforme, alargada, de 30 cm de largo o más, con dos nervaduras longitudinales cerca de la sutura superior; con un número de vainas de 7 – 12 por planta, semillas estrechas y elipsoides, blancas, lisas. Cada semilla tiene un hilo pardo que se extiende por una cuarta parte de la misma (SKERMAN, 1991).

Planta de día corto, es anual, pero se vuelve perenne en zonas húmedas y puede sobrevivir de 2 – 4 años. Posee la capacidad de rebrote después del corte, lo que permite producir más de una cosecha. El desarrollo inicial es rápido, el crecimiento productivo es alto. El sistema radicular presenta alta capacidad de reciclaje de nutrientes (ULRIKE, 1997). La canavalia o frijol espada se adapta bien a temperaturas que van desde los 15 – 30 ºC, con precipitaciones de 640 - 4200 mm/año. Crece en los rangos de altitud de 0 - 1800 msnm, es tolerante a sequías y a sombra; pero muy poco a inundaciones. Se desarrolla bien en suelos pobres y con poco contenido de Fósforo y se adapta a suelos salinos. El pH es de 4.3– 8.0; y se adapta a suelos de textura arenoso – franca a arcillosa (ULRIKE, 1997).

2.8. Macrofauna del suelo

La fauna del suelo o edáfica está constituida por organismos que pasan toda o una parte de su vida sobre la superficie inmediata del suelo, en los troncos podridos y la hojarasca superficial y bajo la superficie de la tierra, incluyendo desde animales microscópicos hasta vertebrados de talla mediana. Para vivir en el suelo, estos organismos han tenido que adaptarse a un
ambiente compacto, con baja concentración en oxígeno y luminosidad, pocos espacios abiertos, baja disponibilidad y calidad de alimentos y fluctuaciones microclimáticas que pueden llegar a ser muy fuertes (LAVELLE et al. 1992).

En los trópicos la macrofauna es la fauna animal más conspicua del suelo e incluye los invertebrados con un diámetro mayor de 2 mm y fácilmente visibles en la superficie o interior del suelo (LINDEN et al., 1994). Entre sus miembros se encuentran los termes, las lombrices de tierra, los escarabajos, las arañas, las larvas de mosca y de mariposa, los caracoles, los milpiés, los ciempiés y las hormigas. De estos organismos, los escarabajos suelen ser los más diversos (con mayor número de especies), aunque en abundancia predominan generalmente los termes y las hormigas y en biomasa las lombrices de tierra (LAVELLE et al., 1994).

Como resultado de la diversidad de estos organismos e intensidad de su actividad son afectadas la distribución del agua en el perfil, el nivel de erosión, el crecimiento de las plantas y la emisión de gases a la atmósfera (CURRY y GOOD, 1992).

LAVELLE y SPAIN (2001) y WARDLE (1995) señalan que la variación de hábitat fue un factor influyente en la diversidad de especies de macrofauna ya que estos responde al manejo (secuencia de cultivos, manera de preparación del suelo, ingreso de materia orgánica fresca, etc.) como resultado de las perturbaciones físicas que se producen, de la manera de distribución de los residuos y de la comunidad de plantas presentes; asimismo,
el tipo, la riqueza de especies vegetales y su manejo tienen efecto sobre la macrofauna del suelo (ALTIERI, 1999; AQUINO et al., 2000; DUBS et al., 2004).

2.8.1. Clasificación de la macrofauna edáfica y su importancia funcional

Los animales geófagos incluyen las lombrices endogéneas y los termes humívoros que ingieren suelo y se alimentan principalmente de la materia orgánica del suelo a diferentes niveles de humificación y/o de raíces muertas. Los detritívoro son descomponedores o desintegradores que se alimentan de material vegetal o animal (carnívoros o necrófagos) en distintos grados de descomposición (detritos). Incluyen varios micro y macro-artrópodos, las lombrices epigéicas y anécicas, caracoles y larvas de moscas, entre otros. Los fitófagos y rizófagos se alimentan de plantas vivas (raíces y/o partes aéreas) e incluyen algunos micro y macro-artrópodos y caracoles. Los depredadores son principalmente carnívoros y se alimentan de otros organismos, incluyendo varias familias de escarabajos, hormigas, ciempiés, arácnidos y escorpiones. Los omnívoros comen todo tipo de alimento, tanto de origen vegetal como animal. Los parásitos son organismos que viven a cuestas de otro (i.e., sin darle ningún beneficio) e incluyen algunas moscas y nemátodos. Aunque los nemátodos son generalmente considerados como parte de la microfauna, el grupo de los mermitídeos, principalmente entomopatógenos, llegan a alcanzar varios centímetros de longitud y pueden ser considerados como macrofauna.
La macrofauna puede además subdividirse en organismos epigeos, endogeos y anécicos (LAVELLE, 1997), presentando cada categoría un papel diferente en el funcionamiento del ecosistema edáfico, aunque miembros de una misma categoría (e.g. los endogeos) pueden también tener efectos distintos sobre el suelo (e.g. compactantes y descompactantes). Los epigeos viven y comen en la superficie del suelo; la mayor parte se alimentan de la hojarasca (macroartrópodos detritívoros, pequeñas lombrices de tierra pigmentadas), otros comen plantas vivas (larvas de mariposas, caracoles) y otros (arañas, hormigas, ciempiés y algunos escarabajos) son predadores del resto de la fauna. La función primordial de los epigeos es fragmentar la hojarasca y promover su descomposición.

Los endogeos, representados principalmente por las lombrices de tierra geófagas y los termes, viven en el suelo y se alimentan de materia orgánica o de raíces (vivas o muertas). Debido a la baja cantidad y calidad de los recursos nutritivos del suelo, suelen seleccionar partículas más ricas en C y tienen que ingerir grandes cantidades de suelo para alimentarse, produciendo consecuentemente amplias galerías y abundantes excretas de diferentes tamaños y composiciones físico-químicas y biológicas. Las galerías pueden llegar a ser muy profundas y representar una parte importante de la macroporosidad del suelo. Las excretas pueden estar depositadas dentro del suelo o en la superficie y a veces son concentradas en forma de nidos (termes).
Los anécicos, representados por las lombrices de tierra, los termes y las hormigas, se alimentan principalmente de la hojarasca de la superficie (también pueden ingerir estiércol de ganado o excretas de otros invertebrados), pero viven en el suelo formando redes semi-permanentes de galerías y a veces nidos como vivienda y lugar para acumular recursos. Para construirlas, ingieren o transportan grandes cantidades de suelo que alteran la agregación del suelo y producen galerías abiertas hacia la superficie del suelo que promueven la oxigenación e infiltración del agua. Sin embargo, el papel principal de los anécicos está en la reubicación de la hojarasca, cambiando la dinámica de su descomposición y su distribución espacial.

CABRERA-DÁVILA (2012) mencionan que los organismos detritívoros - dígase las lombrices de tierra, las termitas, los milpiés, las cochinillas, algunos escarabajos y caracoles, entre otros pueden ser afectados por factores como el clima, la humedad, la textura y las propiedades químicas del suelo. En particular, los integrantes de la hojarasca son muy sensibles a cambios bruscos de humedad y temperatura porque viven en la superficie del suelo y, ante condiciones de estrés hídrico, temperaturas elevadas y la falta de cobertura vegetal, tienden a desaparecer.

2.9. Los Abonos orgánicos

FAO (1997) sostiene que los abonos orgánicos son todos los de origen orgánico que se pueden descomponer por la acción de microbios y del trabajo del ser humano, incluyendo además a los estiércoles de organismos
pequeños y al trabajo de microbios específicos, que ayudan a la tierra a mantener su fuerza o fertilidad.

ZAVALETA (1992) reporta que la materia orgánica tiene la habilidad de retener cationes y minimizar la pérdida por lavaje pues adsorbe nutrientes disponibles, el humus es un estado descomposición de la materia orgánica y posee una alta capacidad de intercambio catiónico, contienen ácidos orgánicos como carboxílicos (-COOH), fenólicos (-OH) que permiten el intercambio de H+ del grupo carboxilo con otros cationes como (K+, Na+, Ca++ y NH4+), por tener una baja y débil afinidad de absorción.

2.9.1. Humus de lombriz

El humus de lombriz es la deyección de la lombriz. "La acción de las lombrices da al fundamento un valor agregado", así se lo valora como un abono completo y eficaz para mejorar los suelos. El lombricompuesto tiene un aspecto terroso, suave e inodoro, de esta manera facilita su manipulación, se dice que el humus de lombriz es uno de los fertilizantes completos, porque aporta todos los nutrientes para la dieta de la planta, de los cuales carecen muy frecuentemente los fertilizantes químicos.

2.9.1.1. Características del humus

Según FERRUZZI y SAENZ (1987), el humus presenta las siguientes características:
Presenta ácidos húmicos y fúlvicos que mejoran las condiciones del suelo, retienen la humedad y puede con facilidad unirse al nivel básico del suelo, lo cual ayuda a la planta para que esté siempre húmedo y frondoso.

Introduce grandes cantidades de microorganismos benéficos al sustrato, que corresponden a los principales grupos fisiológicos del suelo. Esto beneficia a los cultivos ya que los microorganismos ayudan al metabolismo de la planta.

Favorece la acción antiparasitaria y protege a las plantas de plagas.

Desintoxica los suelos contaminados con productos químicos.

Presenta hormonas que aceleran la germinación de las semillas, elimina el impacto del transplante y estimula el crecimiento de la planta.

Rico en enzimas y carga microbiana por gramo de humus seco, actuando como una verdadera vacuna contra los microorganismos patógenos del suelo.

2.9.1.2. Importancia del humus

La descomposición del humus libera ciertas sustancias nutritivas con una abundante provisión de compuestos nitrogenados que quedan a disposición de las plantas; por lo tanto, cualquier tratamiento del suelo que aumente su contenido de humus, tiende a aumentar su productividad. Como
resultado de estas actividades los elementos químicos nutricionales constituidos por. C, N, P, S, Ca, Mg., Zn, etc., se encuentran en los residuos, los cuales son liberados haciéndolos disponibles para las plantas (SAENZ, 1987 y NOVAK, 1990).
III. MATERIALES Y MÉTODOS

3.1. Descripción de la zona de estudio

3.1.1. Lugar de ejecución

La presente investigación se llevó a cabo en el sector Supte San Jorge - Vista alegre, políticamente pertenece al distrito de Rupa Rupa, provincia Leoncio Prado, región Huánuco (Anexo 5). Tuvo una duración comprendido desde el mes de abril 2013 al mes de abril 2014. Geográficamente se encuentra ubicado a 9° 17’ 26” de Latitud Sur y 75° 58’ 45” de Longitud Oeste; a una Altitud 671 msnm.

3.1.2. Zona de vida

HOLDRIDGE (1986), establece en su diagrama bioclimático que ecológicamente de acuerdo a la clasificación de zonas de vida; la provincia de Leoncio Prado se encuentra con formaciones vegetales de bosque muy húmedo premontano tropical (bmh – PT).
3.1.3. Clima

La precipitación comprendida entre los meses de abril 2013 y abril 2014 fue 3103.4 mm, temperatura media 25.5 °C y la humedad relativa media 85% (Anexo 4).

3.1.4. Vegetación

La vegetación es escasa ya que se trata de un terreno ex cocal con aproximadamente 40 años de abandono, predominando especies de rabo de zorro (Andropogon bicornis), torourco (Paspalum conjugatum), cortadera (Paspalum millegrana) y clidemia (Clidemia hirta).

3.1.5. Suelo

Este suelo se caracteriza por presentar especies vegetales propias de un suelo con lavado de nutrientes, tratándose de un terreno en total estado de degradación, debido a la erosión presenta cárcavas. Desde el punto de vista geomorfológico, dichas áreas ocupan posiciones en las vertientes, con pendientes entre 15% a 28%. Según los análisis realizados en el laboratorio de suelos de la Universidad Nacional Agraria de la Selva, presentan suelos con textura franco arcilloso y franco arcillo arenoso, pH extremadamente ácido, niveles medio de materia orgánica y nitrógeno, nivel bajo en fósforo (Anexo 3).
3.2. Materiales, insumos y equipos

3.2.1. Materiales y herramientas

Alambre de púa, postes de bambú, grapas galvanizadas, martillo, alicate, poseadora, pico, pala, machete, costales de polietileno, balde pequeño, wincha de 30 m, brújula, cuadrado muestreador, bolsas de plástico 1 y 5 kg, barreno, envases de plástico, rafía, plumón, pinza.

3.2.2. Material biológico

Semillas botánicas de kudzu (*Pueraria phaseoloides*), centrosema (*Centrosema macrocarpum*), mucuna (*Mucuna pruriens*) y canavalia (*Canavalia ensiformis*) y humus de lombriz.

3.2.3. Equipos de campo

Cámara fotográfica, computadora portátil y Sistema de posicionamiento global (GPS marca Garmin).

3.2.4. Equipos de laboratorio

Balanza de precisión, balanza digital, estufa.

3.2.5. Reactivos

Alcohol y formol.
3.3. Variables a evaluar

3.3.1. Variables dependientes

- Propiedades químicas del suelo (pH, M.O, N , P)
- Macrofauna del suelo (Ind/m²)
- Porcentaje de cobertura (%)
- Biomasa (kg)

3.3.2. Variables independientes

- Especies que serán utilizadas como cobertura (*Pueraria phaseoloides*, *Centrosema macrocarpum*, *Mucuna pruriens* y *Canavalia ensiformis*).
- Humus de lombriz (150 g).

3.4. Metodología

3.4.1. Establecimiento de la parcela de investigación

El establecimiento de la parcela de investigación se realizó en el mes de abril del año 2013; primeramente se delimitó la parcela, que consistió en hacer cercos empleando postes de bambú y alambre de púa. Los postes tuvieron 1.80 m de largo y se colocaron cuatro hileras de alambre distanciados...
en 30 cm desde el suelo y entre hileras. Luego se procedió a tomar muestras compuestas de suelo de los tres bloques para su respectivo análisis químico del suelo. Seguidamente se delimitó las subparcelas (tratamientos a establecer) y las calles. Para el establecimiento se removió el suelo en los puntos donde se estableció cada especie de cobertura. Esta remoción se realizó con un poseador haciendo un hoyo de 10cm de profundidad seguidamente se procedió a aplicar humus de lombriz, en una proporción de 150g por hoyo para apoyar al desarrollo de las plántulas (MENDOZA, 1996; LOPEZ, 1997), este sustrato se aplicó antes de la siembra y se mezcló con la tierra removida. Por último se sembró las semillas botánicas de kudzu, centrosema, mucuna y canavalia con distanciamientos de 40 cm (método cuadrado).

3.4.2. Muestreo de suelo

El muestreo de suelos se realizó al inicio y al término de la investigación, con la ayuda del barreno se obtuvo 5 muestras compuestas, las mismas que fueron enviadas al Laboratorio de Suelos de la Universidad Nacional Agraria de la Selva, para su respectivo análisis químico.

3.4.3. Porcentaje de cobertura

Para determinar el porcentaje de cobertura se utilizó un bastidor de 1m² y rafia que permitió formar 100 cuadrículas de 10 x 10 cm, el bastidor fue colocado en cada unidad de bloque, la estimación de la cobertura se realizó
según la proporción aparente en el que la especie cubrió el área del cuadrado (CIAT, 1982).

3.4.4. Determinación de biomasa

Para determinar la biomasa se realizó el corte circunscrito en cuadrantes de 1 m², a razón de quince muestras, el corte se realizó a 5 cm del suelo abarcando la totalidad de la biomasa aérea contenida en el cuadrante, se procedió a pesar para poder obtener el peso fresco, luego de cada muestra se obtuvo 200 gr el cual se puso en bolsas de papel previamente codificado y fueron secados en la estufa a 70 °C por 72 h hasta obtener un peso seco constante (ICRAF, s/d). La biomasa se determinó con la siguiente ecuación:

\[
B_m = \frac{P_m \times MS(\%)}{100}
\]

Donde:

Bm: Biomasa

Pm: Peso de las muestras.(t)

MS: Porcentaje de materia seca

3.4.5. Muestreo de macrofauna

El método de muestreo de la macrofauna del suelo utilizado fue similar al recomendado por el Tropical Soil Biology and Fertility Program
(TSBF) (Anderson y Ingram, 1993, citado por PASHANASI, 2002). El área de la unidad básica de muestreo fue de 25 x 25 x 20 cm de profundidad. Se realizaron 5 unidades básicas de muestreo por bloque. Los organismos colectados fueron conservados en alcohol 70 % y en formol 4%, luego fueron identificados con la ayuda del técnico del laboratorio de entomología Cesar Ríos Vásquez y asesor por unidades taxonómicas (orden y familia).

3.4.5.1 Densidad de macrofauna

Dado que para cada muestreo se utiliza un cuadrado de 25 cm de lado, lo que representa 1/16 m2, los datos de cada punto de muestreo son multiplicados por 16 para obtener las unidades de número de individuos por m2 (ind. m2) (CORREIA y OLIVEIRA, 2000).

3.4.5.2 Índice de diversidad de macrofauna

Para determinar el índice de diversidad de especies se utilizará la fórmula Índice de Diversidad de Shannon - Wiener (H'):

$$H' = - \sum_{i=1}^{S} p_i \ln p_i$$

Donde: $$p_i = \frac{n_i}{N}$$

S = Número de especies o unidades taxonómicas

Ln= Logaritmo natural
\[n_i = \text{Abundancia de género } i \]

\[N = \text{Abundancia total de los géneros } = \sum n_i \]

3.5. Diseño estadístico

El modelo empleado es un Diseño de Bloque Completo al Azar (DBCA), y está distribuido de la siguiente manera (PADRON, 1996).

3.5.1. Tratamientos

El establecimiento de coberturas para la investigación presentará los siguientes tratamientos.

Cuadro 1. Tratamientos en la investigación.

<table>
<thead>
<tr>
<th>Tratamiento</th>
<th>Área (m²)</th>
<th>Distancia</th>
<th>Plantas</th>
</tr>
</thead>
<tbody>
<tr>
<td>T₀ (Testigo)</td>
<td>12</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>T₁ (Canavalia ensiformis)</td>
<td>12</td>
<td>1.5 x 1 m</td>
<td>48</td>
</tr>
<tr>
<td>T₂ (Pueraria phaseoloides)</td>
<td>12</td>
<td>1.5 x 1 m</td>
<td>48</td>
</tr>
<tr>
<td>T₃ (Mucuna pruriens)</td>
<td>12</td>
<td>1.5 x 1 m</td>
<td>48</td>
</tr>
<tr>
<td>T₄ (Centrosema macrocarpum)</td>
<td>12</td>
<td>1.5 x 1 m</td>
<td>48</td>
</tr>
</tbody>
</table>
3.5.2. Modelo aditivo lineal

\[Y_{ij} = \mu + T_i + \beta_j + \epsilon_{ij} \]

Para:

- \(i = 1,2,3, \ldots \), \(t \) tratamientos
- \(j = 1,2, \ldots \), \(r \) Bloques

\(Y_{ij} \) = Es la variable respuesta, que corresponde a la unidad experimental que pertenece al \(j \)-ésimo bloque donde se instaló el \(i \)-ésimo tratamiento.

- \(\mu \) = Efecto de la media poblacional.

- \(T_i \) = Efecto del \(i \)-ésimo tratamiento.

- \(\beta_j \) = Efecto del \(j \)-ésimo bloque.

- \(\epsilon_{ij} \) = Efectos aleatorios, Error Experimental

3.5.3. Análisis de varianza (ANVA)

Para realizar el análisis de varianza se procedió de la siguiente manera (PADRON, 1996).
Cuadro 2. Análisis de varianza.

<table>
<thead>
<tr>
<th>Fuentes de Variación</th>
<th>Grado de Libertad</th>
<th>Suma de Cuadrados</th>
<th>Cuadrado Medio</th>
<th>Fcal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bloques</td>
<td>(r-1)</td>
<td>SCbloq</td>
<td>CMbloq</td>
<td>(\frac{CMbloque}{CMe})</td>
</tr>
<tr>
<td>Tratamiento</td>
<td>(t-1)</td>
<td>SCtrat</td>
<td>CMtrat</td>
<td>(\frac{CMtrat}{CMe})</td>
</tr>
<tr>
<td>Error</td>
<td>(r-1)(t-1)</td>
<td>SCe</td>
<td>CMe</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>tr-1</td>
<td>SCtotal</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figura 1. Diseño de distribución de los tratamientos en la parcela.
3.5.4. Descripción del diseño experimental

N° de unidades experimentales : 15
Ancho de las calles (bloque a bloque) : 1.5 m
Área total experimental : 126 m²
Área neta experimental : 60 m²
Distancia entre plantas : 0.4 m
Número de plantas por tratamiento : 16

3.5.5. Análisis de datos

Los resultados obtenidos de los análisis de suelos, evaluación de cobertura y biomasa vegetal se compilaron al software Excel 2010 y se procesaron en el paquete estadístico SPSS V.19 para determinar el respectivo análisis de varianza (ANVA). Asimismo se utilizó la prueba Duncan a un 95% de confiabilidad para realizar las comparaciones entre uno y otro tratamiento.

Con respecto a la diversidad de especies; los datos obtenidos en campo, se compilaron en el Excel 2010 y se procesaron en función del índice de diversidad de Shannon – Wienner.
IV. RESULTADOS

4.1. Variación de pH, MO, N, P y macrofauna en suelos degradados bajo efecto de cobertura con *Pueraria phaseoloides*, *Centrosema macrocarpum*, *Mucuna pruriens* y *Canavalia ensiformis*

Se ha registrado el incremento del pH en todos los tratamientos y una menor variación en suelos de *Pueraria phaseoloides* y pasto natural; asimismo se registró el incremento de MO y N en cultivos de *Canavalia ensiformis*, *Pueraria phaseoloides* y *Centrosema macrocarpum*, mientras que en suelos con cobertura de *Mucuna pruriens* y pasto natural (testigo) se registraron disminuciones (Cuadro 3).

Cuadro 3. Variación de elementos y macrofauna en suelos degradados donde se establecieron cobertura.

<table>
<thead>
<tr>
<th>Tratamiento</th>
<th>pH</th>
<th>MO</th>
<th>N</th>
<th>P</th>
<th>Macrofauna (ind. m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Testigo</td>
<td>0.05</td>
<td>-1.06</td>
<td>-0.05</td>
<td>-1.32</td>
<td>123</td>
</tr>
<tr>
<td>Canavalia ensiformis</td>
<td>0.14</td>
<td>0.22</td>
<td>0.01</td>
<td>0.86</td>
<td>171</td>
</tr>
<tr>
<td>Pueraria phaseoloides</td>
<td>0.03</td>
<td>0.54</td>
<td>0.02</td>
<td>-0.43</td>
<td>117</td>
</tr>
<tr>
<td>Mucuna pruriens</td>
<td>0.22</td>
<td>-1.64</td>
<td>-0.07</td>
<td>5.07</td>
<td>85</td>
</tr>
<tr>
<td>Centrosema macrocarpum</td>
<td>0.1</td>
<td>0.86</td>
<td>0.04</td>
<td>-0.6</td>
<td>91</td>
</tr>
</tbody>
</table>
Del mismo modo se obtuvieron incrementos en contenido de P en el suelo con cobertura de *Canavalia ensiformis* y *Mucuna pruriens*. Con respecto a la macrofauna, el suelo con cobertura de *Canavalia ensiformis* presentó la mayor cantidad de individuos con 171 ind.m$^{-2}$ (Cuadro 3).

4.2. Biomasa de *Pueraria phaseoloides*, *Centrosema macrocarpum*, *Mucuna pruriens* y *Canavalia ensiformis* establecida en suelos degradados

No se ha encontrado diferencias estadísticas entre los bloques realizados en la parcela experimental, pero sí hubo diferencias entre los tratamientos utilizados (Cuadro 4).

Cuadro 4. ANVA para la biomasa de las PAPILIONACEAE sembradas en suelos degradados.

<table>
<thead>
<tr>
<th></th>
<th>FV</th>
<th>GL</th>
<th>SC</th>
<th>CM</th>
<th>Fc</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bloque</td>
<td>2</td>
<td>53207.467</td>
<td>26603.734</td>
<td>2.136</td>
<td>0.181ns</td>
<td></td>
</tr>
<tr>
<td>Tratamiento</td>
<td>4</td>
<td>988040.111</td>
<td>247010.028</td>
<td>19.829</td>
<td><0.001**</td>
<td></td>
</tr>
<tr>
<td>EE</td>
<td>8</td>
<td>99653.681</td>
<td>12456.710</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>14</td>
<td>1140901.259</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ns: no existe diferencias estadísticas ($p >0.05$), **: existe diferencias estadísticas ($p <0.05$ y $p <0.01$).
Centrosema macrocarpum y Pueraria phaseoloides fueron las especies de PAPILIONACEAE que registraron mayor biomasa con 646.2 y 618.78 g respectivamente; mientras que Mucuna pruriens no predominó en estos suelos degradados ya que solo alcanzó un 35.11 g en comparación al área testigo que presentó una biomasa promedio de 133.74 g (Cuadro 5 y Figura 2).

Cuadro 5. Comparación de promedios de biomasa (Duncan) de PAPILIONACEAE sembradas en suelos degradados.

<table>
<thead>
<tr>
<th>OM</th>
<th>Tratamientos</th>
<th>Promedio (g)</th>
<th>Significancia</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Centrosema macrocarpum</td>
<td>646.20</td>
<td>a</td>
</tr>
<tr>
<td>2</td>
<td>Pueraria phaseoloides</td>
<td>618.78</td>
<td>a</td>
</tr>
<tr>
<td>3</td>
<td>Canavalia ensiformis</td>
<td>186.23</td>
<td>b</td>
</tr>
<tr>
<td>4</td>
<td>Testigo</td>
<td>133.74</td>
<td>b</td>
</tr>
<tr>
<td>5</td>
<td>Mucuna pruriens</td>
<td>35.11</td>
<td>b</td>
</tr>
</tbody>
</table>

Letras diferentes muestran significancia estadística (p <0.05).
Figura 2. Biomasa presentada en PAPILIONACEAE sembradas en suelos degradados.

4.3. Cobertura de *Pueraria phaseoloides*, *Centrosema macrocarpum*, *Mucuna pruriens* y *Canavalia ensiformis* establecida en suelos degradados

Al analizar los datos pertenecientes a la cobertura por cada cuatro metros cuadrado de terreno (Unidad experimental), no se ha encontrado diferencias estadísticas entre los bloques realizados en la parcela experimental, pero si hubo diferencias entre los tratamientos utilizados (Cuadro 6).
Cuadro 6. ANVA para el porcentaje de cobertura de diferentes PAPILIONACEAE sembradas en suelos degradados.

<table>
<thead>
<tr>
<th></th>
<th>FV</th>
<th>GL</th>
<th>SC</th>
<th>CM</th>
<th>Fc</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bloque</td>
<td>2</td>
<td>20.005</td>
<td>10.003</td>
<td>0.111</td>
<td>0.896ns</td>
<td></td>
</tr>
<tr>
<td>Tratamiento</td>
<td>4</td>
<td>22185.883</td>
<td>5546.471</td>
<td>61.581</td>
<td><0.001**</td>
<td></td>
</tr>
<tr>
<td>EE</td>
<td>8</td>
<td>720.541</td>
<td>90.068</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>14</td>
<td>22926.429</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ns: no existe diferencias estadísticas (p >0.05), **: existe diferencias estadísticas (p <0.05 y p <0.01).
CV: 64.24%

La mayor cobertura promedio se registró al sembrar el Pueraria phaseoloides “kudzu” que en su totalidad a cubierto la unidad experimental (4 m²), siendo estadísticamente similar al Centrocema macrocarpum (100 y 96.37%) y también se ha encontrado predominancia de vegetación en el área donde no se ha realizado siembra de alguna cobertura, indicando que el suelo presentaba semillas de especies rústicas en estado latente; en esta variable, también, se ha determinado que la Mucuna pruriens no predominó y presentó menor cobertura (Cuadro 7 y Figura 3).
Cuadro 7. Comparación de promedios (Duncan) sobre la cobertura en el área sembrada.

<table>
<thead>
<tr>
<th>OM</th>
<th>Tratamientos</th>
<th>Promedio (%)</th>
<th>Significancia</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pueraria phaseoloides</td>
<td>100.00</td>
<td>a</td>
</tr>
<tr>
<td>2</td>
<td>Centrocoma macrocarpum</td>
<td>96.37</td>
<td>a</td>
</tr>
<tr>
<td>3</td>
<td>Testigo</td>
<td>83.27</td>
<td>a</td>
</tr>
<tr>
<td>4</td>
<td>Canavalia ensiformis</td>
<td>31.67</td>
<td>b</td>
</tr>
<tr>
<td>5</td>
<td>Mucuna pruriens</td>
<td>3.67</td>
<td>c</td>
</tr>
</tbody>
</table>

Letras diferentes muestran significancia estadística (p < 0.05).

Figura 3. Cobertura alcanzada en PAPILIONACEAE sembradas en suelos degradados.
4.4. Diversidad de macrofauna en diferentes tratamientos establecidos en suelos degradados

El tratamiento con cultivo de *Centrocema macrocarpum* presentó la mayor diversidad de especies de macrofauna, con un índice de diversidad de Shannon – Wiener (H') de 1.787; seguido de *Pueraria phaseoloides*. Mientras que la *Canavalia ensiformis* y *Mucuna pruriens* presentaron la menor diversidad con un índice de 0.567 y 0.377 respectivamente (Cuadro 8).

Cuadro 8. Diversidad de especies de macrofauna bajo cobertura de PAPILIONACEAE.

<table>
<thead>
<tr>
<th>Tratamientos</th>
<th>Índice de Shannon – Wiener (H')</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centrocema macrocarpum</td>
<td>1.787</td>
</tr>
<tr>
<td>Pueraria phaseoloides</td>
<td>1.461</td>
</tr>
<tr>
<td>Testigo</td>
<td>1.119</td>
</tr>
<tr>
<td>Canavalia ensiformis</td>
<td>0.567</td>
</tr>
<tr>
<td>Mucuna pruriens</td>
<td>0.377</td>
</tr>
</tbody>
</table>
Figura 4. Índice de diversidad de especies de macrofauna alcanzado bajo cobertura de PAPILIONACEAE
V. DISCUSIÓN

5.1. Variación de pH, MO, N, P y macrofauna en suelos degradados bajo efecto de cobertura de PAPILIONACEAE

Se ha registrado el incremento del pH del suelo en todos los tratamientos en los que utilizó las PAPILIONACEAE y se registró el incremento del contenido de materia orgánica y nitrógeno del suelo cuando se estableció Canavalia ensiformis, Pueraria phaseoloides y Centrosema macrocarpum, e incrementos de fósforo en el suelo con cobertura de Canavalia ensiformis y Mucuna pruriens, como consecuencia de la descomposición de los restos vegetales. Con respecto a la disminución de MO y N en suelos con cobertura de Mucuna pruriens y pasto natural (testigo), estos se debieron a la pérdida de nutrientes por erosión y lixiviación, ya que estos dos tratamientos presentaron escasa cobertura para proteger el suelo. VARGAS y VALDIVIA (2005) establecieron PAPILIONACEAE como Centrosema macrocarpum, Pueraria phaseoloides y Arachis pintoi en suelos degradados por el cultivo de coca. Luego de tres años de evaluación obtuvieron un incremento de nutrientes y de diversidad de familias de macroinvertebrados. Asimismo, COULTAS et al. (1996) menciona que el uso de leguminosas como cultivos de cobertura representa una alternativa para proteger al suelo de la erosión y aportan nutrientes.
Con respecto a la macrofauna, el suelo con cobertura de *Canavalia ensiformis* presentó la mayor cantidad de individuos con 171 ind.m$^{-2}$, esto probablemente por el tipo de cobertura que presenta, ya que a diferencia de las otras, esta especie es de tipo arbustiva. BLANCHART *et al.* (2006), indica que el establecimiento de cultivos de cobertura, involucra una adición de materia orgánica fresca al suelo, la cuál es aprovechada por los organismos edáficos como fuente de nutrientes.

5.2. Biomasa de cobertura establecida en suelos degradados

Centrosema macrocarpum y *Pueraria phaseoloides* fueron las especies de PAPILIONACEAE que registraron mayor biomasa con 646.2 y 618.78 g respectivamente; estos resultados son corroborados por VARGAS y VALDIVIA (2005), quienes determinaron que el *Centrosema macrocarpum* incorporó al suelo mayor cantidad de materia seca, seguido por *Arachis pintoi* y *Pueraria phaseoloides*; asimismo, BARBOSA-FEVEREIRO (1977) menciona que el *Centrosema macrocarpum* (Bentham) es una PAPILIONACEAE de crecimiento parecido al kudzu, y es por ello que ambas especies presentan similar biomasa.

Del mismo modo, se puede asumir que la presencia de insectos que atacaron a la especie, las condiciones del suelo y las condiciones climáticas influyeron en el desarrollo de *Mucuna pruriens*, conllevando a una escasa biomasa (35.11 g); pero esta aseveración contrasta con lo mencionado por DUKE (1981); HAIRIAH (1992); LOBO BURLE *et al.* (1992), quienes indican
que esta planta presenta una alta resistencia a factores abióticos adversos, como la sequía, la escasa fertilidad y la elevada acidez del suelo; sin embargo también mencionan que se desarrollan deficientemente en zonas muy frías y húmedas, tal como pudo haber sucedido.

5.3. Porcentaje de cobertura de establecida en suelos degradados

La mayor cobertura promedio se registró al sembrar el Pueraria phaseoloides, siendo estadísticamente similar al Centrosema macrocarpum (100 y 96.37%), estos resultados son corroborados por VARGAS y VALDIVIA (2005) quienes determinaron que Pueraria phaseoloides alcanzó mayor porcentaje de cobertura (99.4%) a un año de establecido, seguido por Centrosema macrocarpum. Del mismo modo; se ha encontrado predominancia de vegetación en el área donde no se ha realizado siembra alguna (testigo), esto probablemente a que el suelo presentaba semillas de especies rústicas en estado latente, quienes en el transcurso de la investigación se desarrollaron. Asimismo se puede afirmar que la falta de adaptación de la Mucuna pruriens influyó en su escasa cobertura.

5.4. Diversidad de macrofauna establecidos en suelos degradados bajo efecto de cobertura

El índice de Shannon nos muestra una mayor diversidad de macrofauna en suelos con cobertura de Centrosema macrocarpum, y una menor en suelos con cobertura de Mucuna pruriens. LAVELLE y SPAIN (2001); WARDLE, (1995) señalaron que la variación de hábitat fue un factor influyente
en la diversidad de especies de macrofauna ya que esto responde al manejo como resultado de las perturbaciones físicas que se producen, de la manera de distribución de los residuos y de la comunidad de plantas presentes; asimismo, el tipo, la riqueza de especies vegetales y su manejo tienen efecto sobre la macrofauna del suelo (ALTIERI, 1999; AQUINO et al., 2000; DUBS et al., 2004). La diversidad de especies pudo haber sido por el tipo de cobertura empleado durante la investigación, ya que según CABRERA-DÁVILA (2012), los integrantes de la hojarasca son muy sensibles a cambios bruscos de humedad y temperatura porque viven en la superficie del suelo y ante condiciones de estrés hídrico, temperaturas elevadas y la falta de cobertura vegetal, tienden a desaparecer.
VI. CONCLUSIONES

1. Las coberturas con PAPILIONACEAE influyeron significativamente en el proceso de recuperación del suelo, al cabo de un año mostraron un incremento en el contenido de pH. Centrocema macrocarpum fue la especie que proporcionó mayor MO y N, con un incremento de 0.86%, seguido de kudzu (0.54%) y Canavalia ensiformis (0.22%). Mientras que la Mucuna pruriens proporcionó el mayor incremento en P con un 5.07%, seguido de Canavalia ensiformis con un 0.86%. Canavalia ensiformis proporcionó la mayor densidad de macrofauna con un total de 171 ind.m-2, seguido de kudzu con 117 ind.m-2.

2. La especie Centrocema macrocarpum proporcionó mayor biomasa con 646.2 g, seguido de kudzu con 618.78 g. Del mismo modo, la Mucuna pruriens proporcionó la menor cantidad de biomasa con 35.11 g.

3. Pueraria phaseoloides proporcionó el mayor porcentaje de cobertura, alcanzando el 100%, seguido por Centrocema macrocarpum con 96.37%.

4. Se encontró una mayor diversidad de especies de macrofauna en suelos con cobertura de Centrocema macrocarpum (H'\(=1.79\)), seguido por Pueraria phaseoloides. Mientras que la Mucuna pruriens presentó la menor diversidad con un índice del 0.377.
VII. RECOMENDACIONES

- Establecer coberturas de PAPILIONACEAE en suelos degradados con fines de recuperación.

- Evaluar el ciclo vegetativo de las PAPILIONACEAE rastreras y arbustivas bajo condiciones de suelos degradados y su influencia en el proceso de recuperación.

- Realizar investigaciones para determinar el aporte de materia orgánica que proporcionan las PAPILIONACEAE rastreras y arbustivas en diferentes periodos de tiempo.

- Evaluar la influencia de los factores bióticos y abióticos en el desarrollo vegetal de la especie Mucuna pruriens establecidos en suelos degradados.
ABSTRACT

The deforestation in the Peruvian Amazonia has been increasing in recent years, this is largely due to the traditional shifting cultivation, which is strengthened by coca cultivation which conduction depends of the destructive practice of slash and burn trees. Given this context, the research seeks an alternative by using coverages with PAPILIONACEAE’s in the process of recovery of the soil. The investigation was realized in Rupa Rupa distric, Leoncio Prado province; between April, 2013 to April, 2014. The aim was to determine the influence of the PAPILIONACEAE’s \((Pueraria phaseoloides, \ Centrosema macrocarpum, Mucuna pruriens \) and \(\text{Canavalia ensiformis} \) \) established in degraded soils. For the evaluation the we used the design in blocks completely at random, with five treatments including the withness. The sampling and analysis of soils was realized to the beginning and at the end of the period of investigation: likewise, we determined biomass and PAPILIONACEAE’s coverage and diversity of species of macrofauna. The coverage with PAPILIONACEAE’s significantly influenced in the recovery process of the soil, after one year showed an increase in the content of pH. \(\text{Centrosema macrocarpum} \) was the species that major MO and N provided, with
an increase of 0.86 %, followed by *Pueraria phaseoloides* 0.54%; whereas the *Mucuna pruriens* provided the major increase in P with 5.07 %, followed by *Canavalia ensiformis* with 0.86 %. Likewise, *Canavalia ensiformis* provided the major density of macrofauna with a total of 171 ind.m$^{-2}$, followed by kutzu with 117 ind.m$^{-2}$. *Centrosema macrocarpum* provided major biomass with 646.2g, followed by *Pueraria phaseoloides* with 618.78g; likewise, the latter provided the major percentage of coverage, reaching 100% followed by *Centrosema macrocarpum* with 96.37 %. The major diversity of species was in soils under coverage of *Centrosema macrocarpum* (H'=1.79), followed by *Pueraria phaseoloides*.
IX. REFERENCIAS BIBLIOGRÁFICAS

CAMAS, R. 1991. Evaluación de especies en relevo de maíz para terrenos intermedios en La Fraylesca, Chiapas. En Memorias del primer seminario sobre manejo de suelos tropicales en Chiapas. Centro de
Investigaciones Ecológicas del Sureste, San Cristóbal de Las Casas, Chiapas, México.

DUGGAR, J.F. 1899. Velvet beans. Alabama Agricultural Experiment Station, Auburn, AL, EUA. Bulletin No. 104

ICARF, s/f. Manual de determinación de las reservas totales de carbono en los diferentes sistemas de uso de tierra en el Perú 22 p.

NOVAK, A 1990. La lombriz de tierra. Curso básico lombricultura ciencia y tecnología Lima-Perú. 27 p.

Consejo Nacional de Ciencia y Tecnología - CONCYTEC. 1ª edición.

Lima – Perú. 190p.
X. ANEXO
Anexo 1. Panel fotográfico

Figura 5. Realizando la siembra de las especies de PAPILIONACEAE en la parcela de investigación.

Figura 6. Vista panorámica de la parcela de investigación.
Figura 7. Realizando el muestreo de cobertura en una parcela de *Centrocoma macrocarpum*.

Figura 8. Realizando el muestreo de macrofauna del suelo.
Anexo 2. Datos tomados durante la evaluación de la investigación

Cuadro 9. Cobertura y biomasa acumulada en PAPILIONACEAE establecidas en suelos degradados.

<table>
<thead>
<tr>
<th>Bloque</th>
<th>Tratamiento</th>
<th>Cobertura (%)</th>
<th>Biomasa (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>100</td>
<td>150.98</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>64.9</td>
<td>160.51</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>84.9</td>
<td>89.73</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>28</td>
<td>152.88</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>36</td>
<td>136.02</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>31</td>
<td>269.79</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>100</td>
<td>402.24</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>100</td>
<td>631.00</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>100</td>
<td>823.11</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
<td>17.80</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>6</td>
<td>71.72</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>15.80</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>89.1</td>
<td>478.13</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>100</td>
<td>785.56</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>100</td>
<td>674.90</td>
</tr>
<tr>
<td>Trat.</td>
<td>Macrofauna del suelo</td>
<td></td>
<td>Macrofauna del suelo</td>
</tr>
<tr>
<td>-------</td>
<td>---------------------</td>
<td>-------</td>
<td>---------------------</td>
</tr>
<tr>
<td></td>
<td>Nº Ind.</td>
<td>Orden</td>
<td>Familia</td>
</tr>
<tr>
<td>T0</td>
<td>8</td>
<td>Hymenoptera</td>
<td>Formicidae</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Coleoptera</td>
<td>Chrysomelidae</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Diplura</td>
<td>Campodeidae</td>
</tr>
<tr>
<td>T1</td>
<td>12</td>
<td>Haplotaxida</td>
<td>Lumbricidae</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Hymenoptera</td>
<td>Formicidae</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Coleoptera</td>
<td>Chrysomelidae</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Coleoptera</td>
<td>Passalidae</td>
</tr>
<tr>
<td>T2</td>
<td>5</td>
<td>Haplotaxida</td>
<td>Lumbricidae</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Haplotaxida</td>
<td>Lumbricidae</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Haplotaxida</td>
<td>Lumbricidae</td>
</tr>
<tr>
<td>T3</td>
<td>2</td>
<td>Coleoptera</td>
<td>Curculionidae</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Araneae</td>
<td>Araneidae</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Orthoptera</td>
<td>Gryllidae</td>
</tr>
<tr>
<td>T4</td>
<td>1</td>
<td>Araneae</td>
<td>Araneidae</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Orthoptera</td>
<td>Tettigoniidae</td>
</tr>
<tr>
<td>Grupo Taxonómico</td>
<td>Ind.</td>
<td>Pi</td>
<td>LN Pi</td>
</tr>
<tr>
<td>-------------------------</td>
<td>------</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>Hymenoptera - Formicidae</td>
<td>14</td>
<td>0.6087</td>
<td>-0.496</td>
</tr>
<tr>
<td>Coleoptera - Chrysomelidae</td>
<td>1</td>
<td>0.0435</td>
<td>-3.135</td>
</tr>
<tr>
<td>Araneae - Araneidae</td>
<td>2</td>
<td>0.0870</td>
<td>-2.442</td>
</tr>
<tr>
<td>Diplura - Campodeidae</td>
<td>5</td>
<td>0.2174</td>
<td>-1.526</td>
</tr>
<tr>
<td>Coleoptera - Carabidae</td>
<td>1</td>
<td>0.0435</td>
<td>-3.135</td>
</tr>
<tr>
<td></td>
<td>S=5</td>
<td>23</td>
<td>-10.73</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grupo Taxonómico</th>
<th>Ind.</th>
<th>Pi</th>
<th>LN Pi</th>
<th>PiLN Pi</th>
<th>Pi²</th>
<th>H'</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hymenoptera - Formicidae</td>
<td>5</td>
<td>0.156</td>
<td>-1.856</td>
<td>-0.290</td>
<td>0.024</td>
<td></td>
</tr>
<tr>
<td>Haplotaxida - Lumbricidae</td>
<td>26</td>
<td>0.813</td>
<td>-0.208</td>
<td>-0.169</td>
<td>0.660</td>
<td></td>
</tr>
<tr>
<td>Coleoptera - Passalidae</td>
<td>1</td>
<td>0.031</td>
<td>-3.466</td>
<td>-0.108</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>S=3</td>
<td>32</td>
<td>-5.530</td>
<td>-0.567</td>
<td>0.686</td>
<td>0.567</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grupo Taxonómico</th>
<th>Ind.</th>
<th>Pi</th>
<th>LN Pi</th>
<th>PiLN Pi</th>
<th>Pi²</th>
<th>H'</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hymenoptera - Formicidae</td>
<td>5</td>
<td>0.227</td>
<td>-1.482</td>
<td>-0.337</td>
<td>0.052</td>
<td></td>
</tr>
<tr>
<td>Coleoptera - Chrysomelidae</td>
<td>5</td>
<td>0.227</td>
<td>-1.482</td>
<td>-0.337</td>
<td>0.052</td>
<td></td>
</tr>
<tr>
<td>Coleoptera - Passalidae</td>
<td>1</td>
<td>0.045</td>
<td>-3.091</td>
<td>-0.141</td>
<td>0.002</td>
<td></td>
</tr>
<tr>
<td>Coleoptera - Elateridae</td>
<td>1</td>
<td>0.045</td>
<td>-3.091</td>
<td>-0.141</td>
<td>0.002</td>
<td></td>
</tr>
<tr>
<td>Coleoptera - Curculionidae</td>
<td>1</td>
<td>0.045</td>
<td>-3.091</td>
<td>-0.141</td>
<td>0.002</td>
<td></td>
</tr>
<tr>
<td>Haplotaxida - Lumbricidae</td>
<td>9</td>
<td>0.409</td>
<td>-0.894</td>
<td>-0.366</td>
<td>0.167</td>
<td></td>
</tr>
<tr>
<td></td>
<td>S=6</td>
<td>22</td>
<td>-13.130</td>
<td>-1.461</td>
<td>0.277</td>
<td>1.461</td>
</tr>
</tbody>
</table>
Cuadro 14. Índice de diversidad de especies en *Mucuna pruriens*

<table>
<thead>
<tr>
<th>Grupo Taxonómico</th>
<th>Ind.</th>
<th>Pi</th>
<th>LNPi</th>
<th>PiLNPi</th>
<th>Pi2</th>
<th>H'</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hymenoptera - Formicidae</td>
<td>2</td>
<td>0.125</td>
<td>-2.079</td>
<td>-0.259</td>
<td>0.0156</td>
<td></td>
</tr>
<tr>
<td>Haplotaxida - Lumbricidae</td>
<td>14</td>
<td>0.875</td>
<td>-0.133</td>
<td>-0.116</td>
<td>0.7656</td>
<td></td>
</tr>
<tr>
<td>S=2</td>
<td>16</td>
<td>-2.213</td>
<td>-0.376</td>
<td>0.7813</td>
<td>0.376</td>
<td></td>
</tr>
</tbody>
</table>

Cuadro 15. Índice de diversidad de especies en *Centrosema macrocarpum*

<table>
<thead>
<tr>
<th>Grupo Taxonómico</th>
<th>Ind.</th>
<th>Pi</th>
<th>LNPi</th>
<th>PiLNPi</th>
<th>Pi2</th>
<th>H'</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hymenoptera - Formicidae</td>
<td>2</td>
<td>0.118</td>
<td>-2.140</td>
<td>-0.252</td>
<td>0.014</td>
<td></td>
</tr>
<tr>
<td>Coleoptera - Chrysomelidae</td>
<td>1</td>
<td>0.059</td>
<td>-2.833</td>
<td>-0.167</td>
<td>0.003</td>
<td></td>
</tr>
<tr>
<td>Coleoptera - Curculionidae</td>
<td>2</td>
<td>0.118</td>
<td>-2.140</td>
<td>-0.252</td>
<td>0.014</td>
<td></td>
</tr>
<tr>
<td>Araneae - Araneidae</td>
<td>2</td>
<td>0.118</td>
<td>-2.140</td>
<td>-0.252</td>
<td>0.014</td>
<td></td>
</tr>
<tr>
<td>Orthoptera - Gryllidae</td>
<td>1</td>
<td>0.059</td>
<td>-2.833</td>
<td>-0.167</td>
<td>0.003</td>
<td></td>
</tr>
<tr>
<td>Orthoptera - Crididae</td>
<td>1</td>
<td>0.059</td>
<td>-2.833</td>
<td>-0.167</td>
<td>0.003</td>
<td></td>
</tr>
<tr>
<td>Orthoptera - Tettigoniidae</td>
<td>1</td>
<td>0.059</td>
<td>-2.833</td>
<td>-0.167</td>
<td>0.003</td>
<td></td>
</tr>
<tr>
<td>Haplotaxida - Lumbricidae</td>
<td>7</td>
<td>0.412</td>
<td>-0.887</td>
<td>-0.365</td>
<td>0.170</td>
<td></td>
</tr>
<tr>
<td>S=8</td>
<td>17</td>
<td>-18.64</td>
<td>-1.787</td>
<td>0.225</td>
<td>1.78</td>
<td></td>
</tr>
</tbody>
</table>
Anexo 3. Análisis de suelo de los tratamientos en investigación

<table>
<thead>
<tr>
<th>Cod. Lab</th>
<th>MUESTRA</th>
<th>ANALISIS MECANICO</th>
<th>pH</th>
<th>M.O.</th>
<th>N</th>
<th>P</th>
<th>K</th>
<th>Ca</th>
<th>Mg</th>
<th>Cl/C</th>
<th>CIC</th>
<th>CAMBiables Crnol(+)/Mg</th>
<th>%</th>
<th>%</th>
<th>%</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>M3101</td>
<td>SUPTTE.1</td>
<td>49.68 31.04 19.28</td>
<td>4.46</td>
<td>4.67</td>
<td>395.72</td>
<td>—</td>
<td>1.53</td>
<td>0.41</td>
<td>0.00</td>
<td>0.00</td>
<td>11.55</td>
<td>2.49</td>
<td>10.92</td>
<td>12.09</td>
<td>87.91</td>
<td>72.11</td>
</tr>
<tr>
<td>M3102</td>
<td>SUPTTE.2</td>
<td>41.88 35.04 23.26</td>
<td>4.51</td>
<td>4.83</td>
<td>339.22</td>
<td>—</td>
<td>2.03</td>
<td>0.55</td>
<td>0.00</td>
<td>0.00</td>
<td>14.40</td>
<td>2.69</td>
<td>19.92</td>
<td>12.67</td>
<td>87.03</td>
<td>72.29</td>
</tr>
<tr>
<td>M3103</td>
<td>SUPTTE.3</td>
<td>49.68 30.04 21.28</td>
<td>4.31</td>
<td>4.16</td>
<td>397</td>
<td>267</td>
<td>1.28</td>
<td>0.35</td>
<td>0.00</td>
<td>0.00</td>
<td>10.04</td>
<td>3.09</td>
<td>14.71</td>
<td>10.56</td>
<td>89.43</td>
<td>99.30</td>
</tr>
</tbody>
</table>

Fuentes:
- Laboratorio de Análisis de Suelos
- Universidad Nacional Agraria de la Selva
- Instituto de Investigaciones Agrarias->Returns
ANÁLISIS DE SUELOS

<table>
<thead>
<tr>
<th>COD. LAB</th>
<th>PROPIETARIO</th>
<th>SECTOR</th>
<th>DISTRITO - PROVINCIA - DEPARTAMENTO</th>
<th>T</th>
<th>DATO</th>
<th>ANALISIS MECANICO</th>
<th>pH</th>
<th>M.O.</th>
<th>N</th>
<th>P</th>
<th>K₂O</th>
<th>CIC</th>
<th>CAMBIABLES</th>
<th>Cmol(+)kg</th>
<th>%</th>
<th>%</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>M053</td>
<td>LLAMOJA RIOS</td>
<td>SUPTE</td>
<td>RIPA LEONCIO PRADO HUANUCO</td>
<td>T0</td>
<td>PASTO NATURAL</td>
<td>31.68</td>
<td>43.04</td>
<td>25.28</td>
<td>4.48</td>
<td>1.60</td>
<td>0.07</td>
<td>2.74</td>
<td>655.90</td>
<td>---</td>
<td>1.80</td>
<td>1.04</td>
<td>---</td>
</tr>
<tr>
<td>M054</td>
<td>LLAMOJA RIOS</td>
<td>SUPTE</td>
<td>RIPA LEONCIO PRADO HUANUCO</td>
<td>T1</td>
<td>CANAVALIA</td>
<td>39.68</td>
<td>37.04</td>
<td>23.28</td>
<td>4.57</td>
<td>2.88</td>
<td>0.14</td>
<td>4.92</td>
<td>402.16</td>
<td>---</td>
<td>2.66</td>
<td>2.13</td>
<td>---</td>
</tr>
<tr>
<td>M055</td>
<td>LLAMOJA RIOS</td>
<td>SUPTE</td>
<td>RIPA LEONCIO PRADO HUANUCO</td>
<td>T2</td>
<td>KUTZU</td>
<td>33.68</td>
<td>41.04</td>
<td>25.28</td>
<td>4.46</td>
<td>3.20</td>
<td>0.14</td>
<td>3.63</td>
<td>363.07</td>
<td>---</td>
<td>1.93</td>
<td>1.23</td>
<td>---</td>
</tr>
<tr>
<td>M056</td>
<td>LLAMOJA RIOS</td>
<td>SUPTE</td>
<td>RIPA LEONCIO PRADO HUANUCO</td>
<td>T3</td>
<td>MUCUNA</td>
<td>35.68</td>
<td>37.04</td>
<td>27.28</td>
<td>4.65</td>
<td>1.02</td>
<td>0.06</td>
<td>9.13</td>
<td>543.27</td>
<td>---</td>
<td>2.71</td>
<td>1.74</td>
<td>---</td>
</tr>
<tr>
<td>M057</td>
<td>LLAMOJA RIOS</td>
<td>SUPTE</td>
<td>RIPA LEONCIO PRADO HUANUCO</td>
<td>T4</td>
<td>CENTROSEMA</td>
<td>33.68</td>
<td>39.04</td>
<td>27.28</td>
<td>4.53</td>
<td>3.52</td>
<td>0.16</td>
<td>3.46</td>
<td>262.36</td>
<td>---</td>
<td>2.80</td>
<td>2.58</td>
<td>---</td>
</tr>
</tbody>
</table>

Fecha: 16 de Mayo del 2014
Recibo Nº 377429
Muestreado por: El solicitante

Señor Mtro. Hugo Huarmat Yipashu
JEFE DE LABORATORIO

<table>
<thead>
<tr>
<th>AÑOS</th>
<th>ABRIL - DICIEMBRE</th>
<th>ENERO - ABRIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESTACIÓN</td>
<td>SUPTÉ</td>
<td></td>
</tr>
<tr>
<td>MESES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abril</td>
<td>25.7</td>
<td>84</td>
</tr>
<tr>
<td>Mayo</td>
<td>25.3</td>
<td>85</td>
</tr>
<tr>
<td>Junio</td>
<td>24.8</td>
<td>85</td>
</tr>
<tr>
<td>Julio</td>
<td>28.3</td>
<td>86</td>
</tr>
<tr>
<td>Agosto</td>
<td>24.9</td>
<td>84</td>
</tr>
<tr>
<td>Setiembre</td>
<td>25.6</td>
<td>82</td>
</tr>
<tr>
<td>Octubre</td>
<td>25.5</td>
<td>86</td>
</tr>
<tr>
<td>Noviembre</td>
<td>25.3</td>
<td>85</td>
</tr>
<tr>
<td>Diciembre</td>
<td>25.6</td>
<td>84</td>
</tr>
<tr>
<td>2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enero</td>
<td>24.6</td>
<td>88</td>
</tr>
<tr>
<td>Febrero</td>
<td>25.0</td>
<td>88</td>
</tr>
<tr>
<td>Marzo</td>
<td>25.2</td>
<td>85</td>
</tr>
<tr>
<td>Abril</td>
<td>25.5</td>
<td>85</td>
</tr>
</tbody>
</table>

Latitud: 09° 12' 30" Sur Longitud: 75° 55' 07" Oeste Altitud: 655 m.s.n.m

<table>
<thead>
<tr>
<th>Meses</th>
<th>Temperatura (°C)</th>
<th>H.R (%)</th>
<th>Precipitación (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abril</td>
<td>25.7</td>
<td>84</td>
<td>330.4</td>
</tr>
<tr>
<td>Mayo</td>
<td>25.3</td>
<td>85</td>
<td>180.5</td>
</tr>
<tr>
<td>Junio</td>
<td>24.8</td>
<td>85</td>
<td>57.6</td>
</tr>
<tr>
<td>Julio</td>
<td>28.3</td>
<td>86</td>
<td>21.0</td>
</tr>
<tr>
<td>Agosto</td>
<td>24.9</td>
<td>84</td>
<td>65.8</td>
</tr>
<tr>
<td>Septiembre</td>
<td>25.6</td>
<td>82</td>
<td>319.2</td>
</tr>
<tr>
<td>Octubre</td>
<td>25.5</td>
<td>86</td>
<td>576.9</td>
</tr>
<tr>
<td>Noviembre</td>
<td>25.3</td>
<td>85</td>
<td>200.6</td>
</tr>
<tr>
<td>Diciembre</td>
<td>25.6</td>
<td>84</td>
<td>389.5</td>
</tr>
<tr>
<td>2014</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enero</td>
<td>24.6</td>
<td>88</td>
<td>343.7</td>
</tr>
<tr>
<td>Febrero</td>
<td>25.0</td>
<td>88</td>
<td>262.7</td>
</tr>
<tr>
<td>Marzo</td>
<td>25.2</td>
<td>85</td>
<td>278.7</td>
</tr>
<tr>
<td>Abril</td>
<td>25.5</td>
<td>85</td>
<td>76.8</td>
</tr>
<tr>
<td>Total</td>
<td>331.30</td>
<td>1107</td>
<td>3103.4</td>
</tr>
<tr>
<td>Promedio</td>
<td>25.5</td>
<td>85</td>
<td>238.7</td>
</tr>
</tbody>
</table>
Anexo 5. Mapa de ubicación de la parcela de investigación.