EFECTO DE FUNGICIDAS ORGÁNICOS Y QUÍMICO EN EL CONTROL DEL MOHO GRIS (*Botrytis cinerea* Pers.) DE LA GRANADILLA (*Passiflora ligularis* Juss.) EN EL DISTRITO DE MOLINO DE LA REGIÓN HUÁNUCO

TESIS

Para optar al título de:

INGENIERO AGRÓNOMO

ABRAHAN SEGUNDO BARTRA LESCANO

Tingo María – Perú

2017
DEDICATORIA

A Dios, por ser nuestro creador, amparo y fortaleza, cuando más lo necesitamos, y por darme la sabiduría y fuerza para seguir adelante y sobrepasar los obstáculos que la vida nos antepone.

A mis queridas madres, Amanda, Albertina y Eldith, por ser el pilar más importante en mi vida y a mi padre Luis por el apoyo incondicional que me brinda.

A mis hermanos José Luis, Henry y Pierina por su gran cariño de hermanos y por impulsarme día tras día a continuar y lograr mis metas.

A mi único amor, Verenice, por estar a mi lado en todo momento y a mis amigos y amigas por ser como son, por enseñarme el valor de la amistad, la confianza y el apoyo incondicional
AGRADECIMIENTO

A Dios por concederme la vida, su bondad y estar a mi lado en todo momento brindándome su apoyo infinito, en los momentos más difíciles de mi vida.

A Ing. Agrónomo Oscar Cabezas Huayllas por el asesoramiento y apoyo durante la redacción de la tesis.

A la Ingeniera Elsa Ospino Malpartida por la enseñanza brindada sobre el cultivo de granadilla.

A los docentes de la Facultad de Agronomía por transmitirme sus sabias enseñanzas y valores que contribuyeron en mi formación profesional.

A la ONG Islas de Paz, por brindarme la oportunidad de realizar mi tesis en el cultivo de granadilla.

A Mirkko Roki Villa Carhuas por la colaboración y nexo para la realización de esta tesis, hago extensivo mi más sincero agradecimiento.
ÍNDICE GENERAL

<table>
<thead>
<tr>
<th>Sección</th>
<th>Título</th>
<th>Pág.</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.</td>
<td>INTRODUCCIÓN.</td>
<td>10</td>
</tr>
<tr>
<td>II.</td>
<td>REVISIÓN DE LITERATURA.</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>2.1. Aspectos importantes del cultivo de granadilla.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.1.1. Características botánicas</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>2.1.2. Variedades</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>2.1.3. Formas de propagación</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>2.1.4. Aspectos ecofisiológicos del cultivo de la granadilla</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>2.1.5. Enfermedades en el cultivo de la granadilla.</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>2.1.6. Plagas</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>2.2. Generalidades del hongo Trichoderma spp.</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>2.2.1. Morfología y taxonomía</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>2.2.2. Mecanismos de Trichoderma spp.</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>2.2.3. Capacidad antagónica de Trichoderma spp.</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>2.2.4. Requerimiento de temperatura de Trichoderma spp.</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>2.3. Generalidades sobre la estrobilurina y los triazoles</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>2.3.1. Estrobilurinas</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>2.3.2. Triazoles</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>2.4. Generalidades del caldo bordalés</td>
<td>27</td>
</tr>
</tbody>
</table>
2.5. Características de los productos estudiados .. 27
 2.5.1. Trichoderma harzianum ... 27
 2.5.2. Caldo bordalés ... 28
 2.5.3. Triazol + Estrobilurina (Opera®) .. 30

2.6. Antecedentes de trabajos realizados .. 30

III. MATERIALES Y MÉTODOS ... 32
 3.1. Lugar de ejecución .. 32
 3.1.1. Ubicación política .. 32
 3.1.2. Ubicación geográfica .. 32
 3.1.3. Características agroecológicas de la zona 32
 3.2. Población, muestra y unidad de análisis ... 33
 3.2.1. Población .. 33
 3.2.2. Muestra ... 33
 3.3. Tratamientos en estudio .. 33
 3.4. Diseño experimental .. 34
 3.4.1. Modelo estadístico .. 34
 3.5. Datos a registrar .. 35
 3.6. Conducción de la investigación ... 35
 3.6.1. Labores agronómicas ... 35

IV. RESULTADOS ... 39
 4.1. Número de frutos ... 39
 4.2. Porcentaje e incidencia de Botrytis cinerea 44
 4.3. Comportamiento de la enfermedad ... 47
4.3.1. Proporción de la enfermedad .. 47
4.3.2. Análisis económico de los tratamientos 53

V. DISCUSIÓN .. 55
 5.1. Número de frutos ... 55
 5.2. Efecto de control ... 55
 5.3. Análisis económico de los tratamientos 57

VI. CONCLUSIONES ... 58

VII. RECOMENDACIONES .. 59

VIII. RESUMEN .. 60

IX. BIBLIOGRAFÍA ... 62

X. ANEXO .. 67
INDICE DE CUADROS

<table>
<thead>
<tr>
<th>Cuadro</th>
<th>Pág.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Tratamientos en estudio.</td>
<td>33</td>
</tr>
<tr>
<td>2. Fechas de evaluación y control.</td>
<td>33</td>
</tr>
<tr>
<td>3. Esquema del análisis de variancia.</td>
<td>34</td>
</tr>
<tr>
<td>4. Resumen del análisis de varianza del número de frutos de granadilla sanos y enfermos con Botrytis cinerea de los tratamientos en estudio durante el periodo de ejecución del experimento</td>
<td>40</td>
</tr>
<tr>
<td>5. Prueba de Duncan (α = 0.05) para el número de frutos de granadilla total, sanos y enfermos con Botrytis cinerea.</td>
<td>41</td>
</tr>
<tr>
<td>6. Resumen del análisis de varianza del porcentaje de incidencia Botrytis cinerea en frutos de granadilla a los 15, 30, 45 y 60 días después de la aplicación de los tratamientos (DDA).</td>
<td>45</td>
</tr>
<tr>
<td>7. Comparación de medias (Duncan α = 0.05) del porcentaje de incidencia de Botrytis cinerea en frutos de granadilla a los 15, 30, 45 y 60 días después de la aplicación de los tratamientos (DDA).</td>
<td>46</td>
</tr>
<tr>
<td>8. Proporción acumulada de la enfermedad del “moho gris” de la granadilla causada por Botrytis cinerea días después de la aplicación de los tratamientos (DDA).</td>
<td>47</td>
</tr>
<tr>
<td>9. Análisis de varianza de la tasa de infección de Botrytis cinerea en frutos de granadilla.</td>
<td>48</td>
</tr>
<tr>
<td>10. Comparación de medias (Duncan α = 0.05) de la tasa de infección de Botrytis cinerea en frutos de granadilla.</td>
<td>49</td>
</tr>
</tbody>
</table>
11. Análisis de varianza del área debajo de la curva de progreso de la enfermedad en frutos de granadilla ... 50
12. Comparación de medias (Duncan α= 0.05) del área debajo de la curva de progreso de la enfermedad en frutos de granadilla 50
13. Análisis de rentabilidad por la aplicación de caldo bordalés, Trichoderma y mezcla de Epoxiconazole + Pyraclostrobin para el control de Botrytis cinerea en frutos de granadilla en Molino, Huanuco .. 54
14. Coeficiente de correlación y estimaciones de los parámetros de los modelos evaluados ... 72
15. Primera evaluación de Botrytis cinerea .. 73
16. Segunda evaluación de Botrytis cinerea .. 74
17. Tercera evaluación de Botrytis cinerea .. 75
18. Cuarta evaluación de Botrytis cinerea .. 76
19. Quinta evaluación de Botrytis cinerea .. 77
20. Primera evaluación de cosecha ... 78
21. Segunda evaluación de cosecha .. 79
22. Tercera evaluación de cosecha ... 80
23. Cuarta evaluación de cosecha ... 81
24. Rendimiento de granadilla por categoría ... 82
25. Prueba de normalidad de Shapiro - Wilk, aplicado a los datos de las variables epidemiológicas ... 82
INDICE DE FIGURAS

<table>
<thead>
<tr>
<th>Figura</th>
<th>Pág.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Forma de preparación para 100 L de caldo bordalés</td>
<td>29</td>
</tr>
<tr>
<td>2. Variación promedio del número de frutos de granadilla sanos, frutos enfermos y totales con Botrytis cinerea</td>
<td>42</td>
</tr>
<tr>
<td>3. Rendimiento total de frutos de granadilla por categorías</td>
<td>43</td>
</tr>
<tr>
<td>4. Rendimiento total de granadilla por cada cosecha</td>
<td>43</td>
</tr>
<tr>
<td>5. Curva de progreso de Botrytis cinerea (datos originales) en frutos de granadilla</td>
<td>51</td>
</tr>
<tr>
<td>6. Curva de progreso de Botrytis cinerea (datos ajustados bajo el modelo monomolecular) en frutos de granadilla</td>
<td>52</td>
</tr>
<tr>
<td>7. Vista del campo experimental del tratamiento Epoxiconazole + Pyraclostrobin (T3)</td>
<td>68</td>
</tr>
<tr>
<td>8. Producción de frutos de la parcela del tratamiento Trichoderma (T2)</td>
<td>68</td>
</tr>
<tr>
<td>9. Frutos formados con ataque de Botrytis cinerea</td>
<td>69</td>
</tr>
<tr>
<td>10. Frutos en formación atacados por Botrytis cinerea</td>
<td>69</td>
</tr>
<tr>
<td>11. Croquis del campo experimental</td>
<td>70</td>
</tr>
<tr>
<td>12. Desarrollo de fruto de la Passiflora ligularis Juss</td>
<td>71</td>
</tr>
</tbody>
</table>
I. INTRODUCCIÓN

La granadilla (*Passiflora ligularis* Juss.), es una fruta oriunda de los andes amazónicos, su domesticación se remonta a los 1200 años a. C, es considerada por los investigadores internacionales; como uno de los cultivos olvidados de los incas, su fruto es de cáscara frágil, en su interior aloja muchas semillas comestibles y de agradable sabor; con alto contenido en calorías, vitamina C, fósforo y niacina, recetada por los médicos pediatras para incluir en la dieta de los niños, desde los primeros meses de nacidos y la medicina moderna recomienda su consumo hasta la tercera edad.

Los principales mercados son los países bajos como Holanda, seguido de Italia, Francia y Canadá. Perú centro de origen de la granadilla, cuenta con mayor espacio geográfico andino amazónico y las condiciones climáticas para producir durante el año que Ecuador y Colombia.

Las áreas cultivadas a nivel nacional se estiman en 12,000 ha; la EMMSA (Empresa de Mercados Mayoristas Nº 2 de frutas de Lima) reporta el ingreso anual de granadillas de 800 t procedentes de diversas regiones del país, presentando limitaciones en la calidad de fruta. Los factores socio culturales y técnicos en el Perú, no permiten su desarrollo óptimo, los rendimientos llegan a 14 t a diferencia de otros países de Europa y África que obtienen rendimientos promedio de 40 t/ha e ingresan con mayor facilidad al mercado internacional.

A nivel del distrito de Molino de la provincia de Pachitea, región Huánuco, se estima una producción de 44250 kg, presentando características de frutos de mala calidad, maduración des uniforme, manchados por la
incidencia de enfermedades, entre otros. A estos problemas se suman el uso inadecuado de fungicidas para el control del “moho gris” que está afectado seriamente la producción en los últimos años en todos los sectores de este distrito (ISLAS DE PAZ, 2010). El agente causal del “moho gris” es el hongo *Botrytis cinerea* Pers., su control deficiente está ocasionando la perdida en rendimientos, calidad del producto cosechado e incremento de los costos de producción. Considerando esta problemática y ante la necesidad de la ONG Islas de Paz de contar con alternativas de control validados se planteó el presente trabajo de investigación con los siguientes:

Objetivo general

- Evaluar la eficacia de tres agentes para el control de *Botrytis cinerea* Pers., en el cultivo de granadilla.

Objetivos específicos

- Evaluar el control de *Botrytis cinerea* Pers. causante del “moho gris” de la granadilla, post aplicación de *Trichoderma*, caldo bordalés y la mezcla de un Triazol + Estroburina.

- Seleccionar en base al rendimiento el producto con mayor efecto de control de *Botrytis cinerea* Pers.
II. REVISIÓN DE LITERATURA

2.1. Aspectos importantes del cultivo de granadilla

2.1.1. Características botánicas

La planta de granadilla es un bejuco de hábito trepador y enredador semileñoso, sus raíces son fibrosas y ramificadas y profundizan de 20 a 40 cm; el tallo, es cilíndrico, de coloración amarillo – verdoso en su estado inicial y marrón claro en estado adulto o lignificado (AREX, 2014). Pertenece a la familia de las Passifloráceas, su nombre científico es Passiflora ligularis Juss; el fruto es una baya de cubierta dura de forma casi esférica de 7 a 8 cm de diámetro, de corteza amarilla intensa cuando está madura, con pequeñas pintas blancas; el exocarpio es duro, firme, pero frágil ante presión o impacto; el mesocarpio es esponjoso y blando de 5 mm de espesor, mientras que el endocarpio está compuesto por una fina membrana blanca que contiene entre 200 a 250 semillas, recubiertas por un arilo o pulpa jugosa, transparente, dulce y aromática, de sabor agradable (BERNAL, 1994). El tamaño recomendable para la granadilla de exportación es entre 4 y 8 cm de diámetro, y el peso entre 125 a 170 g por fruta; dentro de los ecotipos de granadilla en el Perú encontramos a la colombiana, bayuna o gigante (AREX, 2011).

2.1.2. Variedades

En el cultivo de la granadilla, aún no hay variedades reconocidas, lo que tenemos se llaman “ecotipos” o variedades criollas, sin embargo; en la provincia de Pachitea y en otros lugares donde se viene produciendo, se
cuenta con “ecotipos” mejoradas (colombiana) y las comunes o criollas (ISLAS DE PAZ, 2010).

2.1.3. Formas de propagación

2.1.3.1. Semilla

Proveniente de plantas robustas y sanas. Las semillas se extraen del fruto y se dejan en reposo en agua, para luego de 4 a 6 días extraer fácilmente el mucílago con este método se puede conseguir germinaciones de hasta el 80 % sexual (semillas) (NEIVA, 2006).

2.1.3.2. Esquejes

Por este método se consiguen materiales germoplásmicos más homogéneos, especialmente en la cosecha, de forma asexual (estaca, injerto) (NEIVA, 2006).

2.1.4. Aspectos ecofisiológicos del cultivo de la granadilla

La ecofisiología estudia el crecimiento y desarrollo de las plantas en diferentes ambientes, aplicando los conocimientos de la fisiología para así interpretar, también entender su comportamiento y plantar soluciones para su establecimiento frente a factores adversos (NEIVA, 2006).

2.1.4.1. Oferta ambiental

Los factores medio ambientales de mayor importancia para el desarrollo y en la producción de los cultivos son: temperatura, radiación solar, luminosidad, altitud, precipitación, humedad relativa y vientos (NEIVA, 2006).
2.1.4.2. Temperatura

En los cultivos de granadilla, las temperaturas mayores a 20 °C de una parte ocasionan un mayor estrés hídrico, aumentando considerablemente las necesidades de agua y de fertilizante; y de otra, acortan la duración del ciclo de vida del cultivo. Temperaturas inferiores a los 18 °C ofrecen condiciones para una mayor durabilidad de la planta, pero con un crecimiento lento y baja producción; temperaturas menores a 10 a 12 °C disminuyen la fecundación y incrementan los abortos florales entre 90 y 95 %; además, éstos ocasionan cuar-teamiento de los frutos nuevos (CASTRO, 2001). Se adapta muy bien a las condiciones de la costa peruana y al clima de los valles calurosos interandinos. El rango de adaptación se da entre temperaturas de 14 a 24 °C (AREX, 2011). FISCHER (1990), indica que la temperatura afecta de manera indirecta el comportamiento de los agentes polinizadores; temperaturas entre 20 a 22 °C fomentan el vuelo de las abejas, aumentando el número de flores polinizadas, aspecto de vital importancia en la granadilla.

2.1.4.3. Radiación solar y luminosidad

La duración, intensidad y calidad de luz están dentro de los factores climáticos más importantes que determinan la calidad del fruto. La radiación solar, por su función en la fotosíntesis, además de influir sobre el tamaño y la calidad del fruto, es importante en la coloración y el contenido de sólidos solubles (índice refractométrico) que presente el fruto en su madurez. La luminosidad influye sobre el desarrollo de la granadilla, principalmente por la superficie del dosel expuesta, interviniendo en procesos como la diferenciación de primordios florales, la floración y la coloración del fruto, por la formación de
azucares y pigmentos, siendo indispensable en la síntesis de antocianinas (FISCHER, 2000).

2.1.4.4. Altitud

La granadilla es una planta trepadora que crece en la costa, sierra y selva alta, entre 800 y 3000 msnm y alcanza mejor desarrollo entre 1200 a 2400 msnm, pudiendo soportar vientos moderados (AREX, 2011). Con respecto al factor altitudinal para la granadilla, alturas menores de 1500 msnm causan poca viabilidad del polen; a alturas inferiores a 1700 msnm, es mayor la incidencia de los insectos plaga, y el tamaño de los frutos disminuye, obteniéndose un porcentaje superior al 50 % de frutas de segunda calidad, lo que reduce significativamente la rentabilidad del cultivo; en plantaciones establecidas a alturas superiores a los 2500 msnm si bien se presentan frutos más grandes y el ciclo de producción es largo, existe una mayor incidencia a las enfermedades fungosas como Nectria y Botrytis a esa altitud también se disminuye la población de agentes polinizadores naturales (CASTRO, 2001).

2.1.4.5. Precipitación

Según BERNAL (1994) la pluviosidad se encuentra entre los 1500 a 2500 mm anuales. La precipitación debe alcanzar valores entre 1500 y 2500 mm al año y debe estar bien distribuida, exigiendo el valor del límite superior del rango en zonas más bajas, sin embargo, durante el periodo de floración, la lluvia debe ser mínima, dado que el polen humedecido se revienta y pierde su funcionalidad (FISCHER et al., 2009).
2.1.4.6. **Humedad relativa**

La sequía afecta negativamente la iniciación floral, pero una humedad relativa del 80% favorece la viabilidad del polen, la receptividad de los pistilos para la polinización y la fecundación (FISCHER et al., 2009).

2.1.4.7. **Vientos**

Los vientos excesivos en el cultivo de la granadilla afectan en forma indirecta el proceso de floración, ya que las especies encargadas de esta labor (abejas y abejorros), se desplazan mejor en ambientes con poco viento. También pueden ocasionar daños mecánicos a las flores, desecando prematuramente el estigma y el estilo, reduciendo el desarrollo del tubo polínico y la germinación del polen; en ambientes en calma se obtienen un mejor cuajamiento de los frutos. Los vientos secos con temperaturas altas producen aumentos en las tasas de transpiración, desecación de las hojas y disminución de los índices de crecimiento (RIVERA et al., 2002).

2.1.4.8. **Suelos**

Necesita de suelos profundos y fértiles con buena aireación, textura franca o franco arenosa, con gran contenido de materia orgánica y un pH entre 6 y 6.5 (BERNAL, 1994). El cultivo de la granadilla requiere suelos profundos, bien drenados, buena aireación, de textura franco o franco arenoso, no soporta encharcamientos, buen contenido de materia orgánica, y con un pH ideal entre 5.5 - 6.5 (AREX, 2011).
2.1.5. Enfermedades en el cultivo de la granadilla

2.1.5.1. Mancha de la hoja (*Alternaria* sp.)

La *Alternaria* se caracteriza porque en las zonas atacadas aparecen unas manchas de color negro o pardas, bien delimitadas, que en algunos casos pueden estar rodeadas por una o varias aureolas concéntricas amarillentas. Estas manchas van creciendo y se van secando (NEIVA, 2006).

2.1.5.2. Antracnosis (*Colletotrichum gloesporoides*)

Afecta las hojas donde se observan lesiones de color negro. Sobre las frutas se notan pequeños hundimientos de color café rojizo rodeados de un halo blancuzco, que le dan apariencia de roñosa. Los tallos presentan lesiones costrosas corchosas de forma ovalada. Ataca frutos ya formados entre los 40 y los 60 días (NEIVA, 2006).

2.1.5.3. Pudrición de raíces o seca seca (*Fusarium* sp.)

Es una enfermedad muy peligrosa porque puede matar plantas de toda la parcela, inclusive de toda la zona, esta enfermedad es ocasionada por el hongo *Fusarium* sp., la infección se presenta en plantas pequeñas y adultas. La enfermedad se encuentra principalmente en el cuello de la raíz lo taponea y no deja pasar el jugo de la planta con la que se alimenta y nutre todas sus partes, y así ocasionando marchitamiento y muerte de la planta de granadilla (ISLAS DE PAZ, 2010).

2.1.5.4. Roña de los frutos (*Colletotrichum* sp.)

La enfermedad ataca el tallo principal, ramas, hojas y frutos; en tallos y ramas se observa una roña de color café claro y que se ubica
en los tejidos semileñosos en cuyo centro se observan puntos negros que corresponden a las estructuras reproductivas del hongo; en las hojas, la roña se presenta en el pecíolo y largo de las nervaduras, en los frutos las lesiones son algo hundidas, secas, de color café, de forma redondeada que al avanzar la enfermedad, se pueden unir, siguiendo el movimiento del agua sobre el fruto. Cuando se cosecha el fruto, este pierde resistencia al hongo y comienza a ser atacado más rápidamente siendo ablandados los tejidos de la cáscara y pudriéndose en la parte de los frutos (NATAIMA, 2007).

2.1.5.5. Oidiosis en hojas y frutos (*Oidium* sp.)

Su ataque se reconoce por presentar polvitos de color ceniza blanco en las hojas y frutos. Se presenta en época de lluvia, en lugares con mucha sombra y poca ventilación, cuando su ataque es fuerte el contagio es rápido. En el lugar de la hoja que fue atacada se vuelve amarillento y en la fruta quedan manchas negras, dando mal aspecto y bajando la calidad del fruto, lo que hace que a la hora de vender baje el precio de la granadilla (ISLAS DE PAZ, 2010).

2.1.5.6. Pudrición de los frutos (*Botrytis cinerea*)

La enfermedad fue registrada afectando botones y Flores y causando pérdidas cercanas al 70 % de la producción; el llamado “Moho gris” de los botones florales, también afecta frutos y es causado por el hongo *Botrytis cinerea* Pers. Produce gran cantidad de micelio y varios conidióforos largos y muy ramificados, cuyas células apicales redondeadas producen racimos de conidios ovoides, unicelulares (que se asemejan a un racimo de
uvas), tricolores o de color gris o café; el hongo libera fácilmente sus conidios cuando el clima es húmedo; luego, estos son diseminados por el viento; *Botrytis* permanece en el suelo en forma de esclerocios o micelios sobre restos de plantas en granadilla en descomposición (RIVERA *et al.*, 2002).

La incidencia del patógeno en campo varía entre 3 a 10 % en diferentes regiones. La enfermedad se presenta en los cultivos al inicio de la producción, entre 7 y 8 meses de edad. Las infecciones iniciales provienen de los botones florales, sitio en el cual la enfermedad es muy severa y donde un inadecuado control ocasiona la caída de los botones florales en valores superiores al 50 %. Cuando la enfermedad se presenta en los botones florales y frutos se observa un moho de color café claro que afecta a los pistilos en la flor ya fecundada. En los frutos recién formados, el moho afecta el pedúnculo y la base del fruto, en condiciones de alta humedad relativa, cubre totalmente el fruto; el hongo penetra a través de heridas (cicatrices florales, picadura de insecto y cualquier daño físico). El desarrollo del hongo se favorece en condiciones de humedad relativa superior a 95 %, temperaturas entre 20 a 25 °C, abundante luz y exceso de nitrógeno, se desarrolla rápido en órganos senescentes o muertos (RIVERA *et al.*, 2002).

a. Control biológico

Se han descrito diversos hongos (*Trichoderma* spp., *Coniothyrium* spp., *Gliocladium* spp., *Mucor* spp., *Penicillium* spp., *Verticillium* spp.), bacterias y nemátodos como antagonistas de *Botrytis*, citando a los primeros como los más importantes en los cultivos hortícolas; para el control biológico del moho gris de las manzanas se ha descrito el hongo antagónico *Trichoderma*
harzianum; estos agentes de control todavía no se aplican de forma comercial en estos cultivos (INFOAGRO, 2015).

b. Control químico

El control químico de Botrytis ha evolucionado ya que en un principio se basó casi exclusivamente al uso de fungicidas de la familia de los benzimidazoles, posteriormente la de las dicarboximidas; actualmente, con las nuevas moléculas desarrolladas en el mercado para controlar la enfermedad, las alternativas de aplicación son mayores, sin embargo las extremas condiciones ambientales favorables para el desarrollo del patógeno, llevan a las fincas a tomar medidas desesperadas y a realizar aplicaciones consecutivas (con intervalos de aplicación cerrados a 2 - 3 - 4 días entre ellos), haciendo que las alternativas de síntesis química se utilicen en menor tiempo y por lo pronto desgastando a las mismas, debido a posibles inducciones de resistencia por parte del patógeno (SPADARO, 2002; YOURMAN et al., 2001).

2.1.6. Plagas

2.1.6.1. Mosca del botón floral (Dasiops curabae y D. gracilis)

Esta plaga se alimenta de los contenidos de los sacos polínicos y termina consumiendo totalmente las anteras y el ovario, causando la caída del botón floral (NATAIMA, 2007).

La cápsula o botón dañado, se amarilla y luego cae al suelo. El gusano hace hueco el botón floral para salir y se mete al suelo para empupar y luego sale como nueva mosca adulta. Esta plaga se encuentra en
mayor cantidad en época de sol y se comporta como plaga importante (ISLAS DE PAZ, 2010).

2.1.6.2. Mosca de la fruta (*Anastrepha curitis*)

La mosca de las frutas constituye una de las plagas principales de los frutales, por el daño directo que causan a las frutas y porque limitan la producción y limitan su exportación (ICA, 2000).

2.2. Generalidades del hongo *Trichoderma* spp.

El *Trichoderma* spp. es un tipo de hongo anaerobio facultativo que se encuentra naturalmente en un número importante de suelos agrícolas y otros tipos de medios; pertenece a la sub división Deuteromicetes, grupo que se caracteriza por presentar o no un estado sexual determinado; por tanto el género *Trichoderma* es un excelente modelo para ser estudiado debido a su fácil aislamiento y cultivo, rápido desarrollo en varios sustratos y por su condición de controlador biológico de amplia gama de fitopatógenos (FERNÁNDEZ, 2001). PAPAVIZAS (1985) menciona que *Trichoderma* es un hongo que se encuentra en varios tipos de suelos, cumpliendo con su habilidad de degradar varios sustratos orgánicos. Sus metabolitos y su resistencia a la inhibición por otros microorganismos le dan la posibilidad de sobrevivir en muchos nichos ecológicos.

2.2.1. Morfología y taxonomía

El hongo *Trichoderma* es anomorfo que es perteneciente al orden hyphomycetes, cuyo estado sexual o telomorfo correspondería a un hongo ascomycotina productor de peritecios (ALEXOPOULOS, 1996). Llega a poseer
conidióforos erectos o arrastrados, altamente ramificados, más o menos cónicos. Al final del conidióforo se agrupan en forma de pelota las conidias. Posee conidias suaves, verdes, subglobosas a cortas ovoides, 2.4 a 3.2 por 2.2 a 2.8 μm; sus colonias son de rápido crecimiento, con micelio compacto y coloración de blanco a verde; comúnmente forma clamidiosporas intercaladas, raramente terminales. Son globosas a elipsoidales, hialinas y de pared suave (COOK y BAKER, 1989).

Trichoderma spp., pertenece al orden hyphales (Moniliales) y se caracteriza por presentar conidióforos hialinos, muchas veces blanquecinos, no verticilados, phialides simples o en grupos, conidias (Phialosporas) hialinas, unicelulares ovoide que yace en pequeños racimos terminales; se les reconoce fácilmente por su fácil crecimiento y por el color verde de las conidias, son saprófitos muy comunes sobre el suelo o la madera (DICKINSON, 1987). Este género es un habitante común del suelo, cosmopolita, y ha sido reportado como un eficiente micoparásito de *Armillaria mellea*, *Pythium* spp., *Phytophthora* spp., *Rhizoctonia solani*, *Chondrostereum purpureum*, *Sclerotium rolfsii* y *Heterobasidiom annosum* (COOK, 1989). HOWELL (2003) indica que existen varias especies de *Trichoderma* involucradas en el control biológico, *T. viride*, *T. harzianum*, *T. atroviride*, *T. koningii*, *T. lignorum*, *T. longibrachiatum*, etc.

Según AGRIOS (2008), la clasificación taxonómica es:

- **Hongo**: Superior.
- **Subdivisión**: Deuteromycotina.
- **Clase**: Hyphomycetes.
Orden : Hyphales (Moniliales).

Género : *T. harzianum*

PUEYO *et al.*, (1998) indican que, además de controlar eficazmente a patógenos como *R. solani* en el puerro (*Allium puerro* L.), *T. harzianum* tiene un efecto estimulante aumentando el rendimiento del cultivo del puerro, bajo estas condiciones. La tasa de sobrevivencia alcanzó entre un 89 y 93.7 %, presentando los mejores resultados en tratamientos líquidos a una dosis de 40 L/ha.

2.2.2. Mecanismos de *Trichoderma* spp.

Competencia: por el espacio en la rizósfera de la planta y por los recursos nutritivos, propiedad que le proporciona la habilidad de desplazar al patógeno, suprimiendo no expresándose la enfermedad; todos los mecanismos de acción de *T. harzianum* se basan en el principal papel como promotor de crecimiento vegetal que tiene, el cual se manifiesta desde las primeras fases de la plántula, y que le confiere mayores ventajas a la hora del trasplante; *T. harzianum* se asocia a las raíces de la planta proporcionándole un mayor vigor y crecimiento (CHANG *et al.*, 1986). Este hongo crece a medida que lo hace el sistema radicular del vegetal con el que se encuentra asociado, alimentándose de los productos de desecho y de exudados que excreta la planta; ésta a su vez se beneficia al poder colonizar mayor cantidad de suelo gracias al sistema de hifas del hongo, aumentando considerablemente de esta manera el crecimiento de la planta; por ello, se produce un aumento de la captación de nutrientes y de agua en las raíces, ya que explora mayor volumen de suelo, y a su vez, incrementa la solubilización de nutrientes orgánicos como el fósforo;
este mayor vigor a su vez le proporciona a la planta una mayor tolerancia frente a diferentes tipos de estrés tanto abióticos (causado por fertilización, salinidad, riegos y condiciones climáticas no - óptimas como sequía, temperaturas altas, etc.) como bióticos (ataques de patógenos); se ha demostrado que ciertas plantas con *Trichoderma harzianum* no solo ha dado un incremento de flores y de peso total de planta sino que han fungido como antagonista de fitopatógenos (OUSLEY *et al*., 1994).

2.2.3. Capacidad antagónica de *Trichoderma* spp.

La capacidad antagónica de *Trichoderma* es altamente variable. MIHUTA y ROWE (1986), demostraron que de 255 aislamientos de *Trichoderma* spp., obtenidos de distintos lugares geográficos, sólo el 15% de los mismos fueron efectivos en el control de *Rhizoctonia*; igualmente alegan, que las cepas aisladas del mismo lugar son más efectivas que las traídas de fuera. La capacidad antagónica de *Trichoderma* depende de la especificidad de la cepa; ACEVEDO y ARCÍA (1988), detallan que es posible que se tengan aislamientos más eficientes para el control de un patógeno que para otro, de tal forma que esa especificidad deberá ser estudiada; a parte de su facilidad para colonizar las raíces de las plantas, *Trichoderma* ha desarrollado mecanismos para atacar y parasitar a otro hongo y otras así, aprovechar una fuente nutricional adicional; recientemente han sido demostrados varios mecanismos por los cuales actúa *Trichoderma* como biocontrolador y como colonizador de las raíces.

a. Micoparasitismo.

b. Antibiosis.
c. Competencia por nutrientes y espacio.
d. Desactivación de las enzimas de los patógenos.
e. Tolerancia de estrés por parte de la planta, ayuda al desarrollo del sistema radicular.
f. Solubilización y absorción de nutrientes inorgánicos.
g. Resistencia inducida.

2.2.4. Requerimiento de temperatura de *Trichoderma* spp.

Los *Trichoderma* son hongos que llegan a tolerar un amplio rango de temperaturas incluso en los climas fríos registran crecimiento. Una cepa de *Trichoderma* aislada de los suelos de Alaska registró un crecimiento a los 4 ºC y toleró una temperatura máxima de desarrollo a 33 ºC (MC BEATH y ADELMAN, 1991); sin embargo este hecho no garantiza su antagonismo hacia un patógeno determinado; los hongos que son aislados de zonas frías no son eficientes biocontroladores en zonas cálidas y viceversa (ACEVEDO y ARCÍA, 1988). SAMUEL y PARDO - SCHULTHEISS (2000), refieren que *T. stromaticum* se desarrolla óptimamente a 25 ºC, mientras que KNUDSEN y BIN (1990), describen que la temperatura óptima para *T. harzianum* es 20 ºC; para *T. hamatum* de 30 a 35 ºC; para *T. viride* y *T. polysporun* varía entre 28 y 31 ºC.

2.3. Generalidades sobre la estrobilurina y los triazoles

2.3.1. Estrobilurinas

Las estrobilurinas son un grupo de compuestos químicos utilizados en la agricultura como fungicidas; ellos son parte de un grupo más grande de los inhibidores de QoI, que actúan para inhibir la cadena respiratoria en el nivel
de complejo III. Algunas estrobilurinas son azoxistrobina, kresoxim - metil, picoxistrobina, fluoxastrobina, oryzastrobin, dimoxistrobina, piraclostrobina y trifloxistrobina. Las estrobilurinas representan un importante avance en los fungicidas de movimiento mesostémico; ellos son extractos obtenidos del hongo *Strobilurus tenacellus*. Actúan inhibiendo la transferencia de electrones en la mitocondria, lo que altera el metabolismo y la respiración de los hongos. (DOCSETOOL, 2015).

2.3.2. Triazoles

Los triazoles pertenecen al grupo de fungicidas, inhibidores de la desmetilación del C-14 (DMI), fue introducido al mercado a mediados de los años 70. Estos fungicidas son altamente eficaces contra muchas enfermedades fúngicas, especialmente las cenicillas, royas y muchos hongos. Los fungicidas triazol inhiben una enzima específica, C14 - demetilasa, que desempeña un papel en la producción de esterol; los esteroles, como el ergosterol, son necesarios para la estructura de la membrana y su función, haciéndolos esencial para el desarrollo de paredes celulares funcionales; por tanto, estos fungicidas ocasionan la muerte y eventualmente anormal crecimiento fúngico; los triazoles no tienen efecto contra la germinación de la espora porque ellas, contienen suficiente esterol para la formación de los tubos germinativos; los triazoles pueden aplicarse de forma preventiva o tratamiento de la infección temprana (VANDYK, 2006).
2.4. Generalidades del caldo bordalés

Fungicida casero, tradicional utilizado contra una amplia gama de enfermedades fungosas y bacterianas en una gran variedad de cultivos. En el caso de la vid es utilizado para controlar el *mildiu* y la *botrytis* entre otras enfermedades; es un fungicida de contacto; no penetra dentro de los tejidos de las plantas, pero evita que el hongo se desarrolle, al formar una lámina superficial de protección; no cura, pero destruye el hongo e impide que la afección se propague a otras partes sanas; se aplica por pulverización sobre las plantas; se obtiene como resultado de la neutralización en agua de una solución de sulfato de cobre, mediante una suspensión constituida con hidróxido de calcio (CuSO₄ + Ca (OH)₂) (DICIONARIO DEL VINO, 2015).

2.5. Características de los productos estudiados

2.5.1. *Trichoderma harzianum*

Se utilizó el producto producido por el SENASA y distribuido por esta entidad en Huánuco.

La presentación del producto es en bolsas de 800 g, tiene una concentración mínima de 1000 millones (1×10⁹) de esporas o conidias por gramo de formulación. Su forma de preparación y presentación permiten que su viabilidad sea del 100 %, al no sufrir el hongo ningún deterioro por procesos de formulación. Esto asegura que la dosis que se prepare sea realmente lo que se asperja en el cultivo.
La dosis de aplicación fue de 240 g del producto por 20 L de agua, diluyendo el producto primero en 5 L de agua, para luego colarlo y completar el líquido a los 20 L, las aplicaciones se realizaron en las tardes.

2.5.2. Caldo bordalés

Se fabrica por neutralización de una solución de sulfato cúprico con la cal. Contiene 20 % de cobre (expresado en cobre metal). Este fungicida ha sido usado por más de un siglo y sigue empleándose, aunque el cobre puede lixiviarse y contaminar corrientes de agua.

Ingredientes para preparar 100 L:

- 1 kg de sulfato de cobre.
- 1 kg de cal hidratada.
- 2 tinas plásticas (una de ellas debe ser de por lo menos 100 L).
- 1 machete o pedazo de hierro.

Manera de prepararse:

a) Disuelva en la tina A en 10 L de agua el sulfato de cobre.

b) En la tina B en 90 L de agua diluya cal.

c) Agregue el sulfato de cobre de la tina A sobre la tina B que tiene la cal apagada (nunca al revés) y revuelva constantemente.

d) Compruebe si la acidez es óptima, sumergiendo un machete en el caldo por un minuto, aireéelo y observe. Si la hoja se oxida requiere más cal si no, está listo.
Figura 1. Forma de preparación, para 100 L de caldo bordalés.
Se usa inmediatamente después de prepararlo; se puede conservar hasta por 3 días.

Recomendaciones:
- No haga aplicaciones en plantas pequeñas recién germinadas ni en florecimiento.
- El suelo debe estar húmedo antes de aplicarlo.
- Utilice siempre aspersor con boquilla plástica, nunca metálica.
- Para la aplicación del caldo bordalés no debe usarse equipos en los que se hayan aplicado plaguicidas (BEJARANO y RESTREPO, 2002).

Dosis
- Aplicar la dosis de 15 L de solución por 5 L de agua.

2.5.3. Triazol + estrobilurina (Opera®)
Opera® es un fungicida de acción prolongada, que contiene una mezcla de epoxiconazole + pyraclostrobin.

El epoxiconazole es un triazol de la familia de los inhibidores del ergosterol (IBE), con acción sistémica y de larga residualidad. El pyraclostrobin es una estrobilurina de última generación, que posee rapidez de acción, eficacia y amplio espectro de control sobre patógenos. Se recomienda la dosis de 1 L/ha; se recomienda para enfermedades fungosas, así como para Botrytis.

2.6. Antecedentes de trabajos realizados
INIAP (2010) determinó los mejores fungicidas para el control de Botrytis cinerea de baja toxicidad como Iprodione (1 ml/L), procloraz (1 ml/L) y difeconazole (0.251 ml/L). En el 2011, se realizó el estudio de "Alternativas
ecológicas para el control de Moho gris (*Botrytis cinerea*) en Mora de Castilla (*Rubus glaucus* Benth)*, teniendo como tratamientos a los siguientes productos: Fungobacter, Opera®, Bavistín, y Milsana (biofunguicida). Los resultados mostraron que el Testigo Químico del Agricultor (Bavistín) fue el más funcional; pues presentó una (AUDPC) menor en hojas, flores y frutos para incidencia y severidad del moho gris, mientras que el fungicida ecológico (Fungbacter) presentó un mejor control a incidencia y severidad de *Botrytis cinerea* en ramas. MERCHAN *et al.*, (2014), reportan que estudiaron el “Efecto de dos cepas de *Trichoderma* en el control de *Botrytis cinerea* y la calidad del fruto en fresa (*Fragaria* sp.)” La incidencia de la enfermedad en el tratamiento testigo fue del 60 %, mientras que para los tratamientos con *T. harzianum* y *T. lignorum* solo alcanzó un 33 % lo que indica un control mayor de los antagonistas en comparación con el químico sobre la enfermedad.
III. MATERIALES Y MÉTODOS

3.1. Lugar de ejecución

La investigación se realizó en un predio granadillero del distrito de Molino que se encuentra ubicado el caserío de Cochato, provincia Pachitea, región Huánuco, a 59.7 km de la capital ciudad de Huánuco

3.1.1. Ubicación política

Región : Huánuco.
Subregión : Huallaga.
Provincia : Pachitea.
Distrito : Molino.
Lugar : Cochato.

3.1.2. Ubicación geográfica

Zona : 18 L
Coordenada este : 390399.23 m E
Coordenada norte : 8894421.41 m N

3.1.3. Características agroecológicas de la zona

El clima es de la localidad de Cochato es variado, porque se encuentra entre (BP-PMT) – (bmh-MT) y (bh-MT); por ello el clima es templado seco, en las quebradas - elevaciones y frío en las alturas andinas (subregiones: Quechua y Suni o Jalca).
3.2. Población, muestra y unidad de análisis

3.2.1. Población

La población de plantas de granadilla estuvo constituida por 64 plantas (04 plantas por tratamiento, 16 plantas por bloque y 16 por borde).

3.2.2. Muestra

Constituida por 48 plantas (04 plantas por tratamiento).

3.3. Tratamientos en estudio

Los tratamientos estudiados se muestran en el siguiente cuadro

Cuadro 1. Tratamientos en estudio.

<table>
<thead>
<tr>
<th>Clave</th>
<th>Tratamientos</th>
<th>Productos</th>
<th>Nombre Comercial</th>
<th>Dosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>T₁</td>
<td>Caldo bordalés</td>
<td>Caldo bordalés</td>
<td></td>
<td>AI 50 %</td>
</tr>
<tr>
<td>T₂</td>
<td>Trichoderma</td>
<td>Trichoderma</td>
<td></td>
<td>240 g/20 L</td>
</tr>
<tr>
<td>T₃</td>
<td>Epoxiconazole + Pyraclostrobin</td>
<td>Opera®</td>
<td></td>
<td>1 L/ha</td>
</tr>
<tr>
<td>T₄</td>
<td>Testigo</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

(*) 20 L de agua.

Cuadro 2. Fechas de evaluación y control.

<table>
<thead>
<tr>
<th>Fecha de evaluación de Botrytis cinerea</th>
<th>Fechas de aplicación de los tratamientos</th>
</tr>
</thead>
<tbody>
<tr>
<td>20/12/2013</td>
<td>21/12/2013</td>
</tr>
<tr>
<td>05/01/2014</td>
<td>05/01/2014</td>
</tr>
<tr>
<td>20/01/2014</td>
<td>20/01/2014</td>
</tr>
<tr>
<td>05/02/2014</td>
<td>05/02/2014</td>
</tr>
<tr>
<td>20/02/2015</td>
<td>20/02/2015</td>
</tr>
</tbody>
</table>
3.4. Diseño experimental

Se utilizó el diseño de bloques completo al azar con cuatro tratamientos y tres bloques, haciendo un total de 12 unidades experimentales. Las características evaluadas se sometieron al análisis de variancia para la comparación de medias de tratamiento se utilizó la Prueba de Duncan ($\alpha = 0.05$) (CALZADA, 1982).

Cuadro 3. Esquema del análisis de variancia.

<table>
<thead>
<tr>
<th>Fuente de variación</th>
<th>GL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bloques (r-1)</td>
<td>2</td>
</tr>
<tr>
<td>Tratamiento (t-1)</td>
<td>3</td>
</tr>
<tr>
<td>Error experimental</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td>11</td>
</tr>
</tbody>
</table>

t: tratamiento, r: repetición (unidades experimentales)

3.4.1. Modelo estadístico

El modelo aditivo lineal, es el siguiente:

$$Y_{ij} = \mu + ti + \beta j + \varepsilon_{ij}$$

Dónde:

$$Y_{ij} =$$ Respuesta obtenida en la u.e del j-ésimo bloque, sujeta a la aplicación del i-ésimo tratamiento.

$$\mu =$$ Efecto de la media general.

$$ti =$$ Efecto del i-ésimo tratamiento.

$$\beta j =$$ Efecto del j-ésimo bloque.
\(\varepsilon_{ij} = \) Efecto aleatorio del error experimental obtenido en la unidad experimental correspondiente al \(j \) -ésimo bloque sujeta a la aplicación del \(i \) -ésimo tratamiento.

Para:

\[i = 1, \ldots, 4 \text{ tratamientos.} \]
\[j = 1, \ldots, 3 \text{ bloques.} \]

3.5. **Datos a registrar**

Cada 15 días se evaluó el número de frutos sanos y enfermos afectados con *Botrytis cinerea*. La cosecha de frutos se realizó cada 15 días, haciendo un total de cuatro cosechas.

3.6. **Conducción de la investigación**

3.6.1. **Labores agronómicas**

3.6.1.1. **Trazado del campo experimental**

El presente experimento se instaló en un campo de producción de granadilla ya establecido, donde se efectuó la medición de las unidades experimentales para luego demarcar con estacas los bloques y tratamientos.

3.6.1.2. **Descripción del campo experimental**

La medida del campo experimental es como sigue a continuación:
Características del campo experimental

Largo : 32.00 m.
Ancho : 24.00 m.
Área exp. Total : 768.00 m.
Área exp. Neta : 576.00 m.
Área de camino : 192.00 m.

Bloques

Número de bloques : 3
Largo : 24.00 m.
Ancho : 8.00 m.
Área total/ bloque : 192.00 m.

Parcelas

Número de parcelas/bloque : 4
Largo : 8.00 m.
Ancho : 6.00 m.
Área experimental /parcela : 48.00 m.
Número de surcos/parcela : 2
Distanciamiento entre surcos : 3.00 m.
Distanciamiento entre plantas : 4.00 m.
Total de plantas/parcelas : 4

3.6.1.3. Podas

La poda de producción y mantenimiento se realizó con la finalidad de regular la distribución de los asimilados, para ser dirigidos a la producción de estructuras reproductivas y así mantener el balance entre las
diferentes estructuras de la planta, estimulando el crecimiento de nuevas yemas y manteniendo el cultivo con ramas fuertes.

Las podas se realizaron en las ramas terciarias y cuaternarias, se eliminaron las ramas que produjeron, que estaban enfermas o las que eran muy delgadas y se despuntaron aquellas ramas que fueron muy largas y no produjeron para así estimular la floración.

3.6.1.4. **Riegos**

El primer riego se hizo después de la poda y los siguientes se realizaron de acuerdo al requerimiento de cultivo y las condiciones de humedad del suelo.

3.6.1.5. **Control de malezas**

Se realizó en forma manual durante todo el periodo vegetativo del cultivo para de esta manera evitar la competencia tanto por nutrientes del suelo como por espacio para el buen desarrollo foliar.

3.6.1.6. **Fertilización y abonamiento**

Se realizó la fertilización después de la poda y antes del riego utilizando los siguientes insumos por planta: 1 kg de dolomita, 5 kg de gallinaza, Ulexita, Sulfato de Zinc, Sulfato de Cobre, Sulfato de Manganeso y 450 g de fertilizante 17N – 6P – 18K – 2Mg.

3.6.1.7. **Aporque**

Se aporció en forma manual con ayuda de un azadón con el fin de lograr mayor estabilidad de la planta, mejor aireación y principalmente para evitar que el agua de riego llegue directamente al tallo.
3.6.1.8. **Control fitosanitario**

Control de insectos, al tercer mes de crecimiento del follaje se realizó la primera aplicación de un insecticida a base de Alphacypermetrina (Fastac®), para el control de trips, mosca del botón floral y comedores de hoja como el *Agraulis sp.*

En la floración se realizó otra aplicación con el mismo producto a la dosis de 10 ml/mochila de 20 L de agua dirigido a controlar la mosca del botón floral.

Control de enfermedades, por la naturaleza del estudio, se ha realizado controles contra *Botrytis* en cinco oportunidades con los tratamientos en estudio.

3.6.1.9. **Cosecha**

La primera cosecha se inició a los tres meses de la poda, realizando cuatro cosechas cada 15 días. La cosecha se determinó por el porcentaje de maduración de la fruta, es decir, cuando el fruto tiene 75 % de color amarillo y 25 % de color verde. La cosecha se inició el 08/03/2014.
IV. RESULTADOS

4.1. Número de frutos

En el Cuadro 4, se muestra el análisis de varianza de frutos totales, sanos y enfermos donde: para frutos totales y frutos sanos no existe diferencia estadística significativa para el efecto de bloques y tratamientos, mientras que para frutos enfermos existe diferencias significativas. El coeficiente de variación (41.38 %) es alto, debido a la influencia en los promedios de los tratamientos por la presencia dispersa de la enfermedad en el campo.

El total de frutos obtenidos, el total de frutos sanos y el total de frutos enfermos se presentan en el Cuadro 5, en el que se observa que en el parámetro de frutos totales (Sanos + Enfermos), el tratamiento Testigo (T₄) ocupa el primer lugar con una cantidad de 2461 frutos, y no se diferencia estadísticamente de ninguno de los tratamientos tratados con los fungicidas.

Para el parámetro de frutos sanos, el tratamiento Epoxiconazole + Pyraclostrobin (T₃), obtuvo la mayor cantidad de frutos sanos, sin diferenciarse del resto de los tratamientos, mientras que para frutos enfermos con Botrytis cinerea, el tratamiento Epoxiconazole + Pyraclostrobin (T₃), obtuvo la menor cantidad de frutas enfermas sin diferenciarse estadísticamente de los tratamientos caldo bordalés (T₁) y Trichoderma (T₂), los cuales difieren estadísticamente con el testigo.
Cuadro 4. Resumen del análisis de varianza del número de frutos de granadilla sanos y enfermos con *Botrytis cinerea* en estudio durante el periodo de ejecución del experimento.

<table>
<thead>
<tr>
<th>Fuente de variación</th>
<th>G.L</th>
<th>Cuadrados medios</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Total frutos</td>
</tr>
<tr>
<td>Bloques</td>
<td>2</td>
<td>10885.58 N.S</td>
</tr>
<tr>
<td>Tratamientos</td>
<td>3</td>
<td>30064.56 N.S</td>
</tr>
<tr>
<td>Error experimental</td>
<td>6</td>
<td>26126.14</td>
</tr>
<tr>
<td>Total</td>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>

C.V. (%)

24.06
41.38
28.83

NS : No existe significancia.
AS : Diferencias significativas al 1 % de probabilidad.
S : Diferencias significativas al 5 % de probabilidad.
C.V : Coeficiente de variabilidad.
Cuadro 5. Prueba de Duncan ($\alpha = 0.05$) para el número de frutos de granadilla total, sanos y enfermos con *Botrytis cinerea*.

<table>
<thead>
<tr>
<th>Tratamientos</th>
<th>Número de frutos</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
<td>Sanos</td>
<td>Enfermos</td>
<td></td>
</tr>
<tr>
<td>Testigo</td>
<td>2461 a</td>
<td>612 a</td>
<td>1849 a</td>
<td></td>
</tr>
<tr>
<td>Caldo bordalés</td>
<td>1836 a</td>
<td>658 a</td>
<td>1178 a b</td>
<td></td>
</tr>
<tr>
<td>Trichoderma</td>
<td>1930 a</td>
<td>958 a</td>
<td>972 b</td>
<td></td>
</tr>
<tr>
<td>Epoxiconazole + Pyraclostrobin</td>
<td>1835 a</td>
<td>959 a</td>
<td>876 b</td>
<td></td>
</tr>
</tbody>
</table>

Tratamientos unidos por la misma letra en columna no existe significación estadística.

En la Figura 2, se puede observar la variación promedio de la cantidad total de frutos, enfermos y sanos cosechados donde se observa que el tratamiento Epoxiconazole + Pyraclostrobin (T_3) y *Trichoderma* (T_2), obtuvieron menores frutos infectados por *Botrytis cinerea* en consecuencia las cosechas fueron mayores que los demás tratamientos, lo que no sucedió con los tratamientos Testigo (T_4) y Caldo bordalés (T_1); que tuvieron los más bajos rendimientos.
Figura 2. Variación promedio del número de frutos de granadilla (a) sanos, (b) enfermos y (c) totales con Botrytis cinerea.
Figura 3. Rendimiento total de frutos de granadilla por categorías.

Figura 4. Rendimiento total de granadilla por cada cosecha.
4.2. **Porcentaje e incidencia de *Botrytis cinerea***

En el Cuadro 6, se presentan los porcentajes de incidencia de la pudrición de la granadilla (*Botrytis cinerea*). En el que se observa que a los 15, 30, 45 y 60 días, existen diferencias significativas para el efecto de bloques en la mayoría de las evaluaciones, mientras que para el efecto de los tratamientos hay diferencias estadísticas significativas a partir de los 45 días hasta los 60 días. Lo que quiere decir que al menos un tratamiento fue diferente del otro para los días donde hubo significancia estadística. Los coeficientes de variabilidad son 26.63, 40.35, 30.50 y 47.61 %, para el porcentaje de incidencia de la enfermedad a los 15, 30, 45 y 60 días respectivamente, son aceptables para las condiciones en que se realizó el experimento; sin embargo nos indica que los resultados son muy variables. En el Cuadro 7, se muestra la comparación de medias del porcentaje de control *Botrytis cinerea* en granadilla, donde se observa que las evaluaciones de los tratamientos a los 15 y 30 días, no existen diferencias estadísticas entre los tratamientos. Mientras que las evaluaciones del porcentaje de incidencia a los 45 y 60 días, resulto que los mejores tratamientos fueron Epoxiconazole + Pyraclostrobin (T₃) y *Trichoderma* (T₂), que se diferenciaron estadísticamente de los demás, pero no difieren estadísticamente entre ellos. En la Figura 3 se puede apreciar que los tratamientos Epoxiconazole + Pyraclostrobin (T₃) y *Trichoderma* (T₂), lograron el menor porcentaje de incidencia de la pudrición de la granadilla a los 45 y 60 días.
Cuadro 6. Resumen del análisis de varianza del porcentaje de incidencia *Botrytis cinerea* en frutos de granadilla a los 15, 30, 45 y 60 días después de la aplicación de los tratamientos (DDA).

<table>
<thead>
<tr>
<th>Fuente variación</th>
<th>G.L</th>
<th>A los 15 DDA</th>
<th>A los 30 DDA</th>
<th>A los 45 DDA</th>
<th>A los 60 DDA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CM</td>
<td>CM</td>
<td>CM</td>
<td>CM</td>
</tr>
<tr>
<td>Bloques</td>
<td>2</td>
<td>137.74</td>
<td>S</td>
<td>95.20</td>
<td>S</td>
</tr>
<tr>
<td>Tratamientos</td>
<td>3</td>
<td>7.76</td>
<td>N.S</td>
<td>5.31</td>
<td>N.S</td>
</tr>
<tr>
<td>Error experimental</td>
<td>6</td>
<td>24.39</td>
<td>121.00</td>
<td>23.28</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C.V. (%)

| | 26.64 | 40.36 | 30.50 | 47.61 |

NS : No existe significancia.
AS : Diferencias significativas al 1 % de probabilidad.
S : Diferencias significativas al 5 % de probabilidad.
C.V : Coeficiente de variabilidad.
Cuadro 7. Comparación de medias (Duncan α = 0.05) del porcentaje de incidencia *Botrytis cinerea* en frutos de granadilla a los 15, 30, 45 y 60 días después de la aplicación de los tratamientos (DDA).

<table>
<thead>
<tr>
<th></th>
<th>A los 15 DDA</th>
<th>A los 30 DDA</th>
<th>A los 45 DDA</th>
<th>A los 60 DDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tratamientos</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>Testigo</td>
<td>17.12 a</td>
<td>17.20 a</td>
<td>9.03 a</td>
<td>1.89 a</td>
</tr>
<tr>
<td>Trichoderma</td>
<td>17.25 a</td>
<td>17.87 a</td>
<td>11.03 a</td>
<td>3.13 a</td>
</tr>
<tr>
<td>Epoxiconazole +</td>
<td>19.43 a</td>
<td>18.43 a</td>
<td>18.03 a b</td>
<td>3.58 a</td>
</tr>
<tr>
<td>Pyraclostrobin</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caldo bordalés</td>
<td>20.36 a</td>
<td>20.30 a</td>
<td>25.30 b</td>
<td>7.43 b</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tratamientos unidos por la misma letra en columna no existe significación estadística.
4.3. Comportamiento de la enfermedad

De los tres modelos matemáticos probados, el más adecuado es el modelo monomolecular para la proporción de la enfermedad (*Botrytis cinerea*) ya que esta tuvo un mayor coeficiente de correlación.

4.3.1. Proporción de la enfermedad

El Cuadro 8 y la Figura 5 muestran la proporción de la enfermedad acumulada, promedio de cuatro repeticiones en los diferentes tratamientos en las cinco evaluaciones. Se observó que el Testigo (T₄) y Caldo bordalés (T₁), alcanzaron mayores proporciones de enfermedad, mientras que los tratamientos *Trichoderma* (T₂) y Epoxiconazole + Pyraclostrobin (T₃) controlaron mejor la enfermedad, siendo menor la proporción de enfermedad acumulada.

Cuadro 8. Proporción acumulada de la enfermedad del “moho gris” de la granadilla causada por *Botrytis cinerea* días después de la aplicación de los tratamientos (DDA).

<table>
<thead>
<tr>
<th>Evaluaciones (DDA)</th>
<th>Caldo bordalés</th>
<th>Trichoderma</th>
<th>Epoxiconazole + Pyraclostrobin</th>
<th>Testigo</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0070</td>
<td>0.0068</td>
<td>0.0048</td>
<td>0.0092</td>
</tr>
<tr>
<td>15</td>
<td>0.0322</td>
<td>0.0297</td>
<td>0.0271</td>
<td>0.0457</td>
</tr>
<tr>
<td>30</td>
<td>0.0596</td>
<td>0.0550</td>
<td>0.0498</td>
<td>0.0876</td>
</tr>
<tr>
<td>45</td>
<td>0.0864</td>
<td>0.0725</td>
<td>0.0627</td>
<td>0.1233</td>
</tr>
<tr>
<td>60</td>
<td>0.0914</td>
<td>0.0754</td>
<td>0.0680</td>
<td>0.1435</td>
</tr>
</tbody>
</table>
En el Cuadro 9 se muestra el análisis de varianza realizado para las diferentes tasas de infección correspondientes a los tratamientos en estudio, donde se observa no hay diferencias significativas para el efecto de bloques, en cambio hay significancia estadística para los tratamientos en prueba. El coeficiente de variabilidad es 34.38 %, el cual indica que los resultados fueron muy variables, esto se debería a muchos factores siento uno de los más importantes los factores edafoclimáticos.

Cuadro 9. Análisis de varianza de la tasa de infección de *Botrytis cinerea* en frutos de granadilla.

<table>
<thead>
<tr>
<th>Fuente de variación</th>
<th>GL</th>
<th>SC</th>
<th>CM</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bloques</td>
<td>2</td>
<td>0.00034</td>
<td>0.000172</td>
<td>NS</td>
</tr>
<tr>
<td>Tratamientos</td>
<td>3</td>
<td>1.8E-07</td>
<td>0.000059</td>
<td>S</td>
</tr>
<tr>
<td>Error experimental</td>
<td>6</td>
<td>0.00097</td>
<td>0.000162</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>11</td>
<td>0.0013</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CV (%): 34.38

NS: No existe significancia.
S: Diferencias significativas al 5 % de probabilidad.
C.V: Coeficiente de variabilidad.

Realizada la prueba de comparación de medias o significación de Duncan (\(\alpha = 0.05\)) a las tasas promedios de la infección (Cuadro 10) con la finalidad de ver cuál es aritméticamente y estadísticamente el mejor tratamiento, se observa que hay diferencias estadísticas significativas entre los tratamientos, siendo los mejores el *Trichoderma* (T\(_2\)) y Epoxiconazole + Pyraclostrobin (T\(_3\)), con una tasa de infección de 0.0270 y 0.0241 respectivamente, mientras que los tratamientos Testigo (T\(_4\)) y Caldo bordalés...
(T₁) alcanzaron las mayores tasas de infección, por lo que mostraron bajo control de *Botrytis cinerea*.

Cuadro 10. Comparación de medias (Duncan α = 0.05) de la tasa de infección de *Botrytis cinerea* en frutos de granadilla.

<table>
<thead>
<tr>
<th>Tratamiento</th>
<th>Promedio de tasa de infección</th>
<th>Clave</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>T₃ Epoxiconazole + Pyraclostrobin</td>
<td>0.0241</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>T₂ Trichoderma</td>
<td>0.0270</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>T₁ Caldo bordalés</td>
<td>0.0331</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>T₄ Testigo</td>
<td>0.0518</td>
<td>b</td>
<td></td>
</tr>
</tbody>
</table>

Tratamientos unidos por la misma letra en columna no existe significación estadística.

El Cuadro 11, se muestra el análisis de varianza para las áreas debajo de la curva de progreso de la enfermedad donde se corrobora con las tazas de infección, encontrándose significación entre el área debajo de la curvas de progreso de la enfermedad del tratamiento Testigo (T₄) y Caldo bordalés (T₁) con respecto al área debajo de la curva de progreso de la enfermedad de los demás tratamientos. Asimismo se destacaron estadísticamente los tratamientos *Trichoderma* (T₂) y Epoxiconazole + Pyraclostrobin (T₃), que tuvieron una menor ADCPE Al realizar la prueba de comparación de medias (Duncan α = 0.05) (Cuadro 12), nos indica que el tratamiento Testigo (T₄) tiene la mayor área debajo de la curva de progreso sin diferenciarse estadísticamente de los tratamientos Caldo bordalés (T₁) por lo que se podría decir que estos tratamientos tuvieron un mayor tasa de infección.
Cuadro 11. Análisis de varianza del área debajo de la curva de progreso de la enfermedad en frutos de granadilla.

<table>
<thead>
<tr>
<th>Fuente de variación</th>
<th>GL</th>
<th>SC</th>
<th>CM</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bloques</td>
<td>2</td>
<td>7.56</td>
<td>1.55</td>
<td>NS</td>
</tr>
<tr>
<td>Tratamiento</td>
<td>3</td>
<td>3.10</td>
<td>7.35</td>
<td>S</td>
</tr>
<tr>
<td>Error experimental</td>
<td>6</td>
<td>14.01</td>
<td>2.33</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>11</td>
<td>39.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CV (%)</td>
<td></td>
<td>29.31</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cuadro 12. Comparación de medias (Duncan α = 0.05) del área debajo de la curva de progreso de la enfermedad en frutos de granadilla.

<table>
<thead>
<tr>
<th>Clave</th>
<th>Fungicidas</th>
<th>ADCPE(u)</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>T₃</td>
<td>Epoxiconazole + Pyraclostrobin</td>
<td>3.90</td>
<td>a</td>
</tr>
<tr>
<td>T₂</td>
<td>Trichoderma</td>
<td>4.46</td>
<td>a</td>
</tr>
<tr>
<td>T₁</td>
<td>Caldo bordalés</td>
<td>5.04</td>
<td>a b</td>
</tr>
<tr>
<td>T₄</td>
<td>Testigo</td>
<td>7.46</td>
<td>b</td>
</tr>
</tbody>
</table>

Tratamientos unidos por la misma letra en columna no existe significación estadística.
Figura 5. Curva de progreso de *Botrytis cinerea* (datos originales) en frutos de granadilla.
Figura 6. Curva de progreso de Botrytis cinerea (datos ajustados bajo el modelo monomolecular) en frutos de granadilla.
4.3.2. Análisis económico de los tratamientos

En el Cuadro 13, se indica en forma detallada los costos de los insumos y los costos de aplicación para cada tratamiento, asimismo los costos adicionales como son los costos de poda, deshierbo, cosecha y remoción de los frutos, datos expresados en hectáreas.

Se calculó del índice de rentabilidad (beneficio/Costo), a partir de los costos de producción y el ingreso bruto de las distintas categorías de granadilla.

Se observó que el tratamiento *Trichoderma* (T\textsubscript{2}), presentó la más alta rentabilidad (S/. 2.71 por hectárea). Mientras que los tratamientos Epoxiconazole + Pyraclostrobin (T\textsubscript{3}), Caldo bordelés (T\textsubscript{1}) y Testigo (T\textsubscript{4}), presentaron similares índices de rentabilidad de S/. 1.51, 1.59 y 1.57 respectivamente por hectárea.
Cuadro 13. Análisis de rentabilidad por la aplicación de Caldo bordalés, *Trichoderma* y mezcla de Epoxiconazole + Pyraclostrobin para el control de *Botrytis cinerea* en frutos de granadilla en Molino, Huánuco.

<table>
<thead>
<tr>
<th>Insumos</th>
<th>Ingreso Total (S/.</th>
<th>Utilidad Neta (S./)</th>
<th>rentabilidad (S./)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Poda y deshierbo</td>
<td>Cosecha y remoción</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Costo de</td>
<td>de frutos</td>
<td></td>
</tr>
<tr>
<td></td>
<td>aplicación</td>
<td>(S./)</td>
<td></td>
</tr>
<tr>
<td>Caldo bordalés</td>
<td>95.00</td>
<td>1440.00</td>
<td>3085.00</td>
</tr>
<tr>
<td>Trichoderma</td>
<td>123.00</td>
<td>1440.00</td>
<td>3113.00</td>
</tr>
<tr>
<td>Epoxiconazole + Pyraclostrobin</td>
<td>1415.00</td>
<td>1440.00</td>
<td>4405.00</td>
</tr>
<tr>
<td>Testigo</td>
<td>0.00</td>
<td>1440.00</td>
<td>2790.00</td>
</tr>
</tbody>
</table>

Costo de aplicación del Caldo bordalés = S/.16.00 / kg x 1.00 kg / ha x 5 aplicaciones = S/. 80.00 + 15.00 (adherente) = S/. 95.00.
Costo de aplicación del *Trichoderma* = S/.13.50 / kg x 1.60 kg / ha x 5 aplicaciones = S/.108.00 + 15.00 (adherente) = S/. 123.00.
Costo de aplicación de Epoxiconazole + Pyraclostrobin = S/.280.00 / l x 1 l / ha x 5 aplicaciones = S/.1400.00 + 15.00 (adherente) = S/. 1415.00.
Costo de aplicación (mano de obra) = 2 jornales / aplicación / ha x 5 aplicaciones x S/. 20.00 / jornal = S/. 200.00.
Precio promedio por caja de granadilla según categoría(Súper = S/. 30.00 / caja de 86 frutos, Extra = S/. 25.00 / caja de 94 frutos, Primera= S/. 20.00 / caja de122 frutos, Segunda = S/. 15.00 / caja de150 frutos, Tercera = S/. 10.00 / caja de 200 frutos)
V. DISCUSIÓN

5.1. Número de frutos

Los tratamientos estudiados redujeron el número de frutos enfermos frente al testigo sin aplicación y se obtuvieron mayor número de frutos sanos. Respecto a la producción total de frutos se encontró, que el testigo presentó el mayor número. Los productos Epoxiconazole + Pyraclostrobin (Opera®) (T3), Trichoderma (T2) fueron los que lograron el mayor número de frutos sanos (959 y 958 frutos respectivamente), y menor número de frutos enfermos (876 y 972 frutos respectivamente). Los resultados obtenidos con el producto Trichoderma en granadilla son similares a los obtenidos en el cultivo de fresa por MERCHÁN – GAITÁN et al., (2014); mientras que los resultados de Opera® en el control de Botrytis difieren con los resultados de ALENCASTRO (2011), que no encontró buenos resultados en el control de Botrytis en Mora de Castilla, probablemente por la severidad de la infección, a que los triazoles pueden aplicarse de forma preventiva o como tratamiento de la infección temprana (VANDYK, 2006).

5.2. Efecto de control

Los tratamientos estudiados muestran diferenciación en su control de Botrytis a partir de la tercera aplicación, los tratamientos Epoxiconazole + Pyraclostrobin (T3) y Trichoderma (T2) destacan en la disminución del porcentaje de incidencia, días después de la tercera aplicación con 9.030 y 11.030 % de incidencia, y cuarta aplicación con 1.890 y 3.130 % de incidencia.
La diferencia encontrada entre los tratamientos en el control de *Botrytis* y su mayor diferenciación en las últimas aplicaciones, probablemente se deban a que los productos utilizados (*Trichoderma* y *Opera®*) requieren ser utilizados preventivamente. Esta opinión se sustenta en el reporte de VANDYK (2006) quien indica que los Triazoles no tienen efecto contra la germinación de la espora porque las esporas contienen suficiente esterol para la formación de los tubos del germen; y la de ACEVEDO y ARCÍA (1988) que menciona que la capacidad antagónica de *Trichoderma* depende de la especificidad de la cepa., detallan que es posible que se tengan aislamientos más eficientes para el control de un patógeno que para otro, de tal forma que esa especificidad deberá ser estudiada.

5.2.1. Epidemiología comparativa

Los tratamientos que obtuvieron mayor proporción de la enfermedad fueron el Testigo (*T*4) y Caldo bordalés (*T*1) con valores del ADCPE de 7.460 y 5.037 respectivamente. Mientras que los tratamientos *Trichoderma* (*T*2) y Epoxiconazole + Pyraclostrobin (*T*3) controlaron mejor la enfermedad, siendo menor la proporción de enfermedad acumulada, valores de ADCPE 4.457 y 3.903 respectivamente. Las diferencias en las proporciones de la enfermedad están relacionadas directamente con el modo de acción de los productos utilizados, opinión concordante con lo indicado por el DICCIONARIO DEL VINO (2015) sobre que, el caldo bordalés es un protector de contacto; no penetra dentro de los tejidos de las plantas, pero evita que el hongo se desarrolle, al formar una lámina superficial de protección; no cura, por tanto, las partes de la planta ya atacada, pero destruye el hongo e impide que la afección
se propague a otras partes sanas. Se aplica por pulverización sobre la planta; por su parte las estrobilurinas (DOCSETOOL, 2015) tienen un efecto supresor sobre otros hongos, inhiben la transferencia de electrones en la mitocondria, lo que altera el metabolismo y la prevención del crecimiento de los hongos; y finalmente Trichoderma actúa como biocontrolador y como colonizador de las raíces por micoparasitismo, antibiosis, competencia por los nutrientes y espacio, con la desactivación de las enzimas de los patógenos, tolerancia de estrés por parte de la planta, ayuda al desarrollo del sistema radicular, solubilización y absorción de nutrientes inorgánicos, y resistencia inducida.

5.3. Análisis económico de los tratamientos

La aplicación de Trichoderma (S/. 2.71), resultó más rentable que los demás tratamientos, seguido de Epoxiconazole + Pyraclostrobin (S/. 1.59), testigo (S/. 1.57) y el Caldo bordalés (S/. 1.51), que tuvieron retornos intermedios similares, para el caso del testigo se debe a que no hubo gastos en el control de la enfermedad haciendo elevar su rentabilidad. Por otro lado el Epoxiconazole + Pyraclostrobin que pese a que tuvo el máximo rendimiento de 66597.22 kg, resultó ser de rentabilidad intermedia (S/.), esto es debido a que el costo del fungicida es elevado.
VI. CONCLUSIONES

1. La mayor incidencia del “moho gris” causado por *Botrytis cinerea* en frutos de granadilla se presenta a los 45 días después de iniciado la cosecha; alcanzando en el testigo un 25.3 %; mientras que en los tratamientos con Caldo bordelés (T₁), *Trichoderma* (T₂) y fungicida Epoxiconazole + Pyraclostrobin (T₃) fueron de 18.3, 11 y 9 % respectivamente.

2. Existen diferencias estadísticas en el control de la incidencia de *Botrytis cinerea* en frutos a los 45 y 60 días de iniciadas las cosechas; siendo, los tratamientos con *Trichoderma* (T₂) y fungicida Epoxiconazole + Pyraclostrobin (T₃) estadísticamente mejor sólo frente al tratamiento testigo (T₄).

3. Aun cuando no existen diferencias estadísticas para los rendimientos de frutos sanos, los tratamientos con el fungicida Epoxiconazole + Pyraclostrobin (T₃), *Trichoderma* (T₂) y Caldo bordelés (T₁) lograron producir 299.7, 299.4 y 177.5 % más frutos sanos que el tratamiento testigo (T₄).

4. Los mejores rendimientos de frutos sanos se logran utilizando los tratamientos Epoxiconazole + Pyraclostrobin (T₃) y *Trichoderma* (T₂) con 959 y 958 frutos respectivamente.
VII. RECOMENDACIONES

1. Promover el uso de *Trichoderma* spp. en el control de *Botrytis cinerea* del cultivo de granadilla orgánico, por su procedencia biológica y no diferencia significativa frente a los fungicidas.

2. Difundir a los agricultores de la zona la importancia de un manejo integrado en el cual los factores determinantes para un mejor control son: fungicidas, clima, limpieza del cultivo, fertilización, drenajes, entre otros.

3. Repetir el ensayo en zonas y épocas diferente al presente estudio.
VIII. RESUMEN

La investigación “Efecto de fungicidas orgánicos y químico en el control del moho gris (Botrytis cinerea Pers.), de la granadilla (Passiflora ligularis Juss.) en el distrito de Molino de la Región Huánuco” se realizó en la localidad de Cochato del distrito de Molino en la provincia de Pachitea – Huánuco, con el objetivo de: evaluar la eficacia de tres agentes para el control de B. cinerea Pers. en el cultivo de granadilla. Los componentes en estudio fueron, Caldo bordalés (T₁), Trichoderma (T₂), Epoxiconazole + Pyraclostrobin (T₃), Testigo (T₄). El estudio empleó el diseño de bloques completamente al azar (DBCA) con 4 tratamientos y 3 repeticiones y para la comparación de los promedios se utilizó la prueba de significación de Duncan al 0.05 % de confianza.

Se llegó a las siguientes conclusiones: i) La mayor incidencia del moho gris causado por Botrytis cinerea en el cultivo de granadilla se presenta a los 45 días después de iniciada la cosecha, alcanzando en el testigo un 25.3 %; mientras que en los tratamientos con Caldo bordalés (T₁), Trichoderma (T₂) y fungicida Epoxiconazole + Pyraclostrobin (T₃) fueron de 18.3, 11 y 9 % respectivamente; ii) Existen sólo diferencias estadísticas en el control de la incidencia de Botrytis cinerea en frutos a los 45 y 60 días de iniciadas las cosechas; siendo, los tratamientos con Trichoderma (T₂) y fungicida Epoxiconazole + Pyraclostrobin (T₃) estadísticamente mejor sólo frente al tratamiento testigo (T₄); iii) Aun cuando no existen diferencias estadísticas para los rendimientos de frutos sanos, los tratamientos con el fungicida Epoxiconazole + Pyraclostrobin (T₃), Trichoderma (T₂) y Caldo bordalés (T₁)
lograron producir 299.7, 299.4 y 177.5 % más frutos sanos que el Testigo (T₄); y iv) Los mejores rendimientos de frutos sanos se logran utilizando los tratamientos Epoxiconazole + Pyraclostrobin (T₃) y Trichoderma (T₂) con 959 y 958 frutos respectivamente.
IX. BIBLIOGRAFÍA

23. ICA. 2000. Manejo de plagas con tecnología MIP. División de sanidad vegetal, Boletín de sanidad vegetal N° 29. 64 p.

X. ANEXO
Figura 7. Vista del campo experimental del tratamiento Epoxiconazole + Pyraclostrobin (T₃)

Figura 8. Producción de frutos de la parcela del tratamiento *Trichoderma* (T₂)
Figura 9. Frutos formados con ataque de *Botrytis cinerea*.

Figura 10. Frutos en formación atacados por *Botrytis cinerea*.
<table>
<thead>
<tr>
<th></th>
<th>BLOQUE I</th>
<th>EFECTO BORDE</th>
<th>BLOQUE II</th>
<th>EFECTO BORDE</th>
<th>BLOQUE III</th>
</tr>
</thead>
<tbody>
<tr>
<td>T₃</td>
<td>X X</td>
<td>X</td>
<td>T₂</td>
<td>X X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>X X</td>
<td></td>
<td>T₄</td>
<td>X X</td>
<td></td>
</tr>
<tr>
<td>T₁</td>
<td>X X</td>
<td>X</td>
<td>T₃</td>
<td>X X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>X X</td>
<td></td>
<td>T₂</td>
<td>X X</td>
<td></td>
</tr>
<tr>
<td>T₄</td>
<td>X X</td>
<td>X</td>
<td>T₁</td>
<td>X X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>X X</td>
<td></td>
<td>T₃</td>
<td>X X</td>
<td></td>
</tr>
<tr>
<td>T₂</td>
<td>X X</td>
<td>X</td>
<td>T₄</td>
<td>X X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>X X</td>
<td></td>
<td>T₁</td>
<td>X X</td>
<td></td>
</tr>
</tbody>
</table>

Figura 11. Croquis del campo experimental.
Figura 12. Desarrollo de fruto de la *Passiflora ligularis* Juss.
Cuadro 14. Coeficiente de correlación y estimaciones de los parámetros de los modelos evaluados.

<table>
<thead>
<tr>
<th>Modelos</th>
<th>Tratamientos</th>
<th>Parámetros</th>
<th>Estimación</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gompertz = (\exp(-\beta \exp(-\gamma \text{Tiempo})))</td>
<td>T₁</td>
<td>β</td>
<td>3.880</td>
<td>0.893</td>
</tr>
<tr>
<td></td>
<td></td>
<td>γ</td>
<td>0.009</td>
<td></td>
</tr>
<tr>
<td></td>
<td>T₂</td>
<td>β</td>
<td>3.915</td>
<td>0.86</td>
</tr>
<tr>
<td></td>
<td></td>
<td>γ</td>
<td>0.008</td>
<td></td>
</tr>
<tr>
<td></td>
<td>T₃</td>
<td>β</td>
<td>4.042</td>
<td>0.859</td>
</tr>
<tr>
<td></td>
<td></td>
<td>γ</td>
<td>0.007</td>
<td></td>
</tr>
<tr>
<td></td>
<td>T₄</td>
<td>β</td>
<td>3.880</td>
<td>0.893</td>
</tr>
<tr>
<td></td>
<td></td>
<td>γ</td>
<td>0.009</td>
<td></td>
</tr>
<tr>
<td>Logístico = (\frac{1}{1+\beta \exp(-\gamma \text{Tiempo})})</td>
<td>T₁</td>
<td>β</td>
<td>40.857</td>
<td>0.859</td>
</tr>
<tr>
<td></td>
<td></td>
<td>γ</td>
<td>0.026</td>
<td></td>
</tr>
<tr>
<td></td>
<td>T₂</td>
<td>β</td>
<td>43.594</td>
<td>0.826</td>
</tr>
<tr>
<td></td>
<td></td>
<td>γ</td>
<td>0.023</td>
<td></td>
</tr>
<tr>
<td></td>
<td>T₃</td>
<td>β</td>
<td>49.752</td>
<td>0.827</td>
</tr>
<tr>
<td></td>
<td></td>
<td>γ</td>
<td>0.023</td>
<td></td>
</tr>
<tr>
<td></td>
<td>T₄</td>
<td>β</td>
<td>40.857</td>
<td>0.967</td>
</tr>
<tr>
<td></td>
<td></td>
<td>γ</td>
<td>0.026</td>
<td></td>
</tr>
<tr>
<td>Monomolecular = ((1-\beta \exp(-\gamma \text{Tiempo})))</td>
<td>T₁</td>
<td>β</td>
<td>0.991</td>
<td>0.967</td>
</tr>
<tr>
<td></td>
<td></td>
<td>γ</td>
<td>0.002</td>
<td></td>
</tr>
<tr>
<td></td>
<td>T₂</td>
<td>β</td>
<td>0.989</td>
<td>0.945</td>
</tr>
<tr>
<td></td>
<td></td>
<td>γ</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>T₃</td>
<td>β</td>
<td>0.991</td>
<td>0.947</td>
</tr>
<tr>
<td></td>
<td></td>
<td>γ</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>T₄</td>
<td>β</td>
<td>0.990</td>
<td>0.967</td>
</tr>
<tr>
<td></td>
<td></td>
<td>γ</td>
<td>0.003</td>
<td></td>
</tr>
<tr>
<td>clave</td>
<td>N° de planta</td>
<td>N° de total de frutos/planta</td>
<td>N° de botrytis/planta</td>
<td>N° de frutos sanos</td>
</tr>
<tr>
<td>-------</td>
<td>--------------</td>
<td>-------------------------------</td>
<td>-----------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>T3</td>
<td>P4</td>
<td>89</td>
<td>2</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td>P3</td>
<td>71</td>
<td>3</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>P2</td>
<td>82</td>
<td>2</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>P1</td>
<td>75</td>
<td>1</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td>T3</td>
<td>317</td>
<td>8</td>
<td>309</td>
</tr>
<tr>
<td>T1</td>
<td>P4</td>
<td>150</td>
<td>6</td>
<td>144</td>
</tr>
<tr>
<td></td>
<td>P3</td>
<td>97</td>
<td>10</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td>P2</td>
<td>80</td>
<td>3</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td>P1</td>
<td>115</td>
<td>2</td>
<td>113</td>
</tr>
<tr>
<td></td>
<td>T1</td>
<td>442</td>
<td>21</td>
<td>421</td>
</tr>
<tr>
<td>T4</td>
<td>P4</td>
<td>165</td>
<td>10</td>
<td>155</td>
</tr>
<tr>
<td></td>
<td>P3</td>
<td>100</td>
<td>1</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>P2</td>
<td>135</td>
<td>6</td>
<td>129</td>
</tr>
<tr>
<td></td>
<td>P1</td>
<td>184</td>
<td>5</td>
<td>179</td>
</tr>
<tr>
<td></td>
<td>T4</td>
<td>584</td>
<td>22</td>
<td>562</td>
</tr>
<tr>
<td>T2</td>
<td>P4</td>
<td>148</td>
<td>10</td>
<td>138</td>
</tr>
<tr>
<td></td>
<td>P3</td>
<td>125</td>
<td>1</td>
<td>124</td>
</tr>
<tr>
<td></td>
<td>P2</td>
<td>154</td>
<td>4</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>P1</td>
<td>124</td>
<td>10</td>
<td>114</td>
</tr>
<tr>
<td></td>
<td>T2</td>
<td>551</td>
<td>25</td>
<td>526</td>
</tr>
</tbody>
</table>
Cuadro 16. Segunda evaluación de *Botrytis cinerea*.

<table>
<thead>
<tr>
<th>clave</th>
<th>B1</th>
<th>B2</th>
<th>B3</th>
</tr>
</thead>
<tbody>
<tr>
<td>N° de planta</td>
<td>Número total de frutos/planta</td>
<td>N° de botrytis/planta</td>
<td>N° de frutos sanos</td>
</tr>
<tr>
<td>T3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P4</td>
<td>106.00</td>
<td>21.00</td>
<td>85.00</td>
</tr>
<tr>
<td>P3</td>
<td>87.00</td>
<td>17.00</td>
<td>70.00</td>
</tr>
<tr>
<td>P2</td>
<td>99.00</td>
<td>9.00</td>
<td>90.00</td>
</tr>
<tr>
<td>P1</td>
<td>92.00</td>
<td>15.00</td>
<td>77.00</td>
</tr>
<tr>
<td>T4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P4</td>
<td>161.00</td>
<td>10.00</td>
<td>151.00</td>
</tr>
<tr>
<td>P3</td>
<td>108.00</td>
<td>11.00</td>
<td>97.00</td>
</tr>
<tr>
<td>P2</td>
<td>91.00</td>
<td>12.00</td>
<td>79.00</td>
</tr>
<tr>
<td>P1</td>
<td>126.00</td>
<td>12.00</td>
<td>114.00</td>
</tr>
<tr>
<td>T1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P4</td>
<td>486.00</td>
<td>45.00</td>
<td>441.00</td>
</tr>
<tr>
<td>P3</td>
<td>175.00</td>
<td>50.00</td>
<td>152.00</td>
</tr>
<tr>
<td>P2</td>
<td>109.00</td>
<td>42.00</td>
<td>97.00</td>
</tr>
<tr>
<td>P1</td>
<td>144.00</td>
<td>32.00</td>
<td>132.00</td>
</tr>
<tr>
<td>T2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P4</td>
<td>195.00</td>
<td>36.00</td>
<td>187.00</td>
</tr>
<tr>
<td>P3</td>
<td>623.00</td>
<td>160.00</td>
<td>568.00</td>
</tr>
<tr>
<td>P2</td>
<td>154.00</td>
<td>15.00</td>
<td>139.00</td>
</tr>
<tr>
<td>P1</td>
<td>133.00</td>
<td>30.00</td>
<td>103.00</td>
</tr>
<tr>
<td>P2</td>
<td>162.00</td>
<td>34.00</td>
<td>128.00</td>
</tr>
<tr>
<td>T3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P1</td>
<td>130.00</td>
<td>20.00</td>
<td>110.00</td>
</tr>
<tr>
<td>T4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P4</td>
<td>579.00</td>
<td>99.00</td>
<td>480.00</td>
</tr>
</tbody>
</table>
Cuadro 17. Tercera evaluación de *Botrytis cinerea*.

<table>
<thead>
<tr>
<th>clave</th>
<th>B1</th>
<th></th>
<th></th>
<th>clave</th>
<th>B2</th>
<th></th>
<th></th>
<th>clave</th>
<th>B3</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nº de planta</td>
<td>Número total de botrytis/planta</td>
<td>Nº de frutos sanos</td>
<td>% Infección</td>
<td>Nº de planta</td>
<td>Número total de botrytis/planta</td>
<td>Nº de frutos sanos</td>
<td>% Infección</td>
<td>Nº de planta</td>
<td>Número total de botrytis/planta</td>
<td>Nº de frutos sanos</td>
</tr>
<tr>
<td>T3</td>
<td>P4</td>
<td>121.00</td>
<td>18.00</td>
<td>103.00</td>
<td>14.88</td>
<td>P4</td>
<td>138.00</td>
<td>12.00</td>
<td>126.00</td>
<td>8.70</td>
<td>P4</td>
</tr>
<tr>
<td></td>
<td>P3</td>
<td>102.00</td>
<td>15.00</td>
<td>87.00</td>
<td>14.71</td>
<td>P3</td>
<td>143.00</td>
<td>7.00</td>
<td>136.00</td>
<td>4.90</td>
<td>P3</td>
</tr>
<tr>
<td></td>
<td>P2</td>
<td>114.00</td>
<td>5.00</td>
<td>109.00</td>
<td>4.39</td>
<td>P2</td>
<td>122.00</td>
<td>6.00</td>
<td>116.00</td>
<td>4.92</td>
<td>P2</td>
</tr>
<tr>
<td></td>
<td>P1</td>
<td>107.00</td>
<td>25.00</td>
<td>82.00</td>
<td>23.36</td>
<td>P1</td>
<td>132.00</td>
<td>10.00</td>
<td>122.00</td>
<td>7.58</td>
<td>P1</td>
</tr>
<tr>
<td>T3</td>
<td>P3</td>
<td>444.00</td>
<td>63.00</td>
<td>381.00</td>
<td>14.19</td>
<td>T2</td>
<td>535.00</td>
<td>35.00</td>
<td>500.00</td>
<td>6.54</td>
<td>T2</td>
</tr>
<tr>
<td></td>
<td>P4</td>
<td>172.00</td>
<td>9.00</td>
<td>163.00</td>
<td>5.23</td>
<td>T3</td>
<td>111.00</td>
<td>40.00</td>
<td>71.00</td>
<td>36.04</td>
<td>T3</td>
</tr>
<tr>
<td></td>
<td>P3</td>
<td>119.00</td>
<td>7.00</td>
<td>112.00</td>
<td>5.88</td>
<td>P3</td>
<td>124.00</td>
<td>36.00</td>
<td>88.00</td>
<td>29.03</td>
<td>T3</td>
</tr>
<tr>
<td></td>
<td>P2</td>
<td>102.00</td>
<td>10.00</td>
<td>92.00</td>
<td>9.80</td>
<td>P2</td>
<td>129.00</td>
<td>25.00</td>
<td>104.00</td>
<td>19.38</td>
<td>P2</td>
</tr>
<tr>
<td></td>
<td>P1</td>
<td>137.00</td>
<td>14.00</td>
<td>123.00</td>
<td>10.22</td>
<td>P1</td>
<td>114.00</td>
<td>32.00</td>
<td>82.00</td>
<td>28.07</td>
<td>P1</td>
</tr>
<tr>
<td>T4</td>
<td>P4</td>
<td>54.00</td>
<td>40.00</td>
<td>490.00</td>
<td>7.55</td>
<td>T3</td>
<td>478.00</td>
<td>133.00</td>
<td>345.00</td>
<td>27.82</td>
<td>T3</td>
</tr>
<tr>
<td></td>
<td>P3</td>
<td>186.00</td>
<td>41.00</td>
<td>145.00</td>
<td>22.04</td>
<td>T3</td>
<td>125.00</td>
<td>54.00</td>
<td>71.00</td>
<td>43.20</td>
<td>T3</td>
</tr>
<tr>
<td></td>
<td>P3</td>
<td>120.00</td>
<td>46.00</td>
<td>140.00</td>
<td>38.33</td>
<td>T3</td>
<td>130.00</td>
<td>40.00</td>
<td>90.00</td>
<td>30.77</td>
<td>T3</td>
</tr>
<tr>
<td></td>
<td>P2</td>
<td>155.00</td>
<td>45.00</td>
<td>143.00</td>
<td>29.03</td>
<td>T3</td>
<td>156.00</td>
<td>60.00</td>
<td>96.00</td>
<td>38.46</td>
<td>T3</td>
</tr>
<tr>
<td></td>
<td>P1</td>
<td>206.00</td>
<td>48.00</td>
<td>158.00</td>
<td>23.30</td>
<td>T3</td>
<td>141.00</td>
<td>42.00</td>
<td>99.00</td>
<td>29.79</td>
<td>T3</td>
</tr>
<tr>
<td>T3</td>
<td>P1</td>
<td>667.00</td>
<td>180.00</td>
<td>586.00</td>
<td>23.50</td>
<td>T3</td>
<td>552.00</td>
<td>196.00</td>
<td>356.00</td>
<td>35.51</td>
<td>T3</td>
</tr>
<tr>
<td></td>
<td>P4</td>
<td>159.00</td>
<td>23.00</td>
<td>136.00</td>
<td>14.47</td>
<td>T3</td>
<td>162.00</td>
<td>49.00</td>
<td>113.00</td>
<td>30.25</td>
<td>T3</td>
</tr>
<tr>
<td></td>
<td>P3</td>
<td>138.00</td>
<td>47.00</td>
<td>91.00</td>
<td>34.06</td>
<td>T3</td>
<td>151.00</td>
<td>45.00</td>
<td>120.00</td>
<td>29.80</td>
<td>T3</td>
</tr>
<tr>
<td></td>
<td>P2</td>
<td>167.00</td>
<td>64.00</td>
<td>103.00</td>
<td>38.32</td>
<td>T3</td>
<td>135.00</td>
<td>44.00</td>
<td>100.00</td>
<td>32.59</td>
<td>T3</td>
</tr>
<tr>
<td></td>
<td>P1</td>
<td>138.00</td>
<td>44.00</td>
<td>94.00</td>
<td>31.88</td>
<td>T3</td>
<td>146.00</td>
<td>42.00</td>
<td>104.00</td>
<td>28.77</td>
<td>T3</td>
</tr>
<tr>
<td>T2</td>
<td>P4</td>
<td>602.00</td>
<td>178.00</td>
<td>424.00</td>
<td>29.57</td>
<td>T4</td>
<td>594.00</td>
<td>180.00</td>
<td>437.00</td>
<td>29.17</td>
<td>T1</td>
</tr>
</tbody>
</table>
Cuadro 18. Cuarta evaluación de *Botrytis cinerea*.

<table>
<thead>
<tr>
<th>clave</th>
<th>N° de planta</th>
<th>Número total de frutos/planta</th>
<th>N° de botrytis / planta</th>
<th>N° de frutos sanos</th>
<th>% Infección</th>
</tr>
</thead>
<tbody>
<tr>
<td>T3</td>
<td>P4</td>
<td>136.00</td>
<td>5.00</td>
<td>131.00</td>
<td>3.68</td>
</tr>
<tr>
<td></td>
<td>P3</td>
<td>117.00</td>
<td>4.00</td>
<td>113.00</td>
<td>3.42</td>
</tr>
<tr>
<td></td>
<td>P2</td>
<td>129.00</td>
<td>5.00</td>
<td>124.00</td>
<td>3.88</td>
</tr>
<tr>
<td></td>
<td>P1</td>
<td>122.00</td>
<td>8.00</td>
<td>114.00</td>
<td>6.56</td>
</tr>
<tr>
<td>T2</td>
<td>T1</td>
<td>504.00</td>
<td>22.00</td>
<td>482.00</td>
<td>4.37</td>
</tr>
<tr>
<td></td>
<td>T2</td>
<td>591.00</td>
<td>39.00</td>
<td>552.00</td>
<td>6.60</td>
</tr>
<tr>
<td></td>
<td>T3</td>
<td>573.00</td>
<td>52.00</td>
<td>521.00</td>
<td>9.08</td>
</tr>
<tr>
<td>T4</td>
<td>T4</td>
<td>711.00</td>
<td>100.00</td>
<td>627.00</td>
<td>13.76</td>
</tr>
<tr>
<td></td>
<td>T2</td>
<td>625.00</td>
<td>69.00</td>
<td>556.00</td>
<td>11.04</td>
</tr>
<tr>
<td>Clave</td>
<td>N° de planta</td>
<td>Número total de frutos/planta</td>
<td>N° de botrytis/planta</td>
<td>N° de frutos sanos</td>
<td>% Infección</td>
</tr>
<tr>
<td>-------</td>
<td>--------------</td>
<td>------------------------------</td>
<td>----------------------</td>
<td>-------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>T3</td>
<td>P4</td>
<td>178.00</td>
<td>9.00</td>
<td>169.00</td>
<td>5.06</td>
</tr>
<tr>
<td></td>
<td>P3</td>
<td>142.00</td>
<td>7.00</td>
<td>135.00</td>
<td>4.93</td>
</tr>
<tr>
<td></td>
<td>P2</td>
<td>95.00</td>
<td>4.00</td>
<td>91.00</td>
<td>4.21</td>
</tr>
<tr>
<td></td>
<td>P1</td>
<td>154.00</td>
<td>9.00</td>
<td>145.00</td>
<td>5.84</td>
</tr>
<tr>
<td>T1</td>
<td>T3</td>
<td>569.00</td>
<td>29.00</td>
<td>540.00</td>
<td>5.10</td>
</tr>
<tr>
<td></td>
<td>P4</td>
<td>125.00</td>
<td>1.00</td>
<td>124.00</td>
<td>0.80</td>
</tr>
<tr>
<td></td>
<td>P3</td>
<td>173.00</td>
<td>2.00</td>
<td>171.00</td>
<td>1.16</td>
</tr>
<tr>
<td></td>
<td>P2</td>
<td>159.00</td>
<td>1.00</td>
<td>158.00</td>
<td>0.63</td>
</tr>
<tr>
<td></td>
<td>P1</td>
<td>170.00</td>
<td>15.00</td>
<td>155.00</td>
<td>8.82</td>
</tr>
<tr>
<td></td>
<td>T1</td>
<td>627.00</td>
<td>19.00</td>
<td>608.00</td>
<td>3.03</td>
</tr>
<tr>
<td>T4</td>
<td>T4</td>
<td>164.00</td>
<td>25.00</td>
<td>151.00</td>
<td>15.24</td>
</tr>
<tr>
<td></td>
<td>P3</td>
<td>183.00</td>
<td>20.00</td>
<td>179.00</td>
<td>10.93</td>
</tr>
<tr>
<td></td>
<td>P2</td>
<td>190.00</td>
<td>22.00</td>
<td>188.00</td>
<td>11.58</td>
</tr>
<tr>
<td></td>
<td>P1</td>
<td>215.00</td>
<td>23.00</td>
<td>207.00</td>
<td>10.70</td>
</tr>
<tr>
<td>T2</td>
<td>T4</td>
<td>752.00</td>
<td>90.00</td>
<td>725.00</td>
<td>11.04</td>
</tr>
<tr>
<td></td>
<td>P4</td>
<td>169.00</td>
<td>5.00</td>
<td>164.00</td>
<td>2.96</td>
</tr>
<tr>
<td></td>
<td>P3</td>
<td>169.00</td>
<td>10.00</td>
<td>159.00</td>
<td>5.92</td>
</tr>
<tr>
<td></td>
<td>P2</td>
<td>159.00</td>
<td>6.00</td>
<td>153.00</td>
<td>3.77</td>
</tr>
<tr>
<td></td>
<td>P1</td>
<td>145.00</td>
<td>8.00</td>
<td>137.00</td>
<td>5.52</td>
</tr>
<tr>
<td>T2</td>
<td>T4</td>
<td>642.00</td>
<td>29.00</td>
<td>613.00</td>
<td>4.52</td>
</tr>
<tr>
<td>Clave</td>
<td>N° de planta</td>
<td>Número de frutos cosechados/planta</td>
<td>Súper</td>
<td>Extra</td>
<td>Primera</td>
</tr>
<tr>
<td>-------</td>
<td>--------------</td>
<td>----------------------------------</td>
<td>-------</td>
<td>-------</td>
<td>---------</td>
</tr>
<tr>
<td>P4</td>
<td>14.00</td>
<td>2.00</td>
<td>8.00</td>
<td>4.00</td>
<td></td>
</tr>
<tr>
<td>P3</td>
<td>21.00</td>
<td>2.00</td>
<td>6.00</td>
<td>11.00</td>
<td>2.00</td>
</tr>
<tr>
<td>P2</td>
<td>35.00</td>
<td>4.00</td>
<td>4.00</td>
<td>20.00</td>
<td>5.00</td>
</tr>
<tr>
<td>P1</td>
<td>11.00</td>
<td>1.00</td>
<td>8.00</td>
<td>2.00</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>81.00</td>
<td>6.00</td>
<td>13.00</td>
<td>47.00</td>
<td>13.00</td>
</tr>
<tr>
<td>P4</td>
<td>27.00</td>
<td>3.00</td>
<td>5.00</td>
<td>15.00</td>
<td>3.00</td>
</tr>
<tr>
<td>P3</td>
<td>36.00</td>
<td>1.00</td>
<td>2.00</td>
<td>23.00</td>
<td>9.00</td>
</tr>
<tr>
<td>P2</td>
<td>48.00</td>
<td>5.00</td>
<td>8.00</td>
<td>30.00</td>
<td>5.00</td>
</tr>
<tr>
<td>P1</td>
<td>29.00</td>
<td>3.00</td>
<td>19.00</td>
<td>4.00</td>
<td>3.00</td>
</tr>
<tr>
<td>TOTAL</td>
<td>140.00</td>
<td>9.00</td>
<td>18.00</td>
<td>87.00</td>
<td>21.00</td>
</tr>
<tr>
<td>P4</td>
<td>47.00</td>
<td>8.00</td>
<td>10.00</td>
<td>16.00</td>
<td>10.00</td>
</tr>
<tr>
<td>P3</td>
<td>61.00</td>
<td>5.00</td>
<td>7.00</td>
<td>44.00</td>
<td>5.00</td>
</tr>
<tr>
<td>P2</td>
<td>67.00</td>
<td>4.00</td>
<td>9.00</td>
<td>50.00</td>
<td></td>
</tr>
<tr>
<td>P1</td>
<td>75.00</td>
<td>6.00</td>
<td>12.00</td>
<td>50.00</td>
<td>7.00</td>
</tr>
<tr>
<td>TOTAL</td>
<td>250.00</td>
<td>23.00</td>
<td>38.00</td>
<td>160.00</td>
<td>22.00</td>
</tr>
<tr>
<td>P4</td>
<td>31.00</td>
<td>3.00</td>
<td>4.00</td>
<td>21.00</td>
<td>2.00</td>
</tr>
<tr>
<td>P3</td>
<td>49.00</td>
<td>4.00</td>
<td>5.00</td>
<td>29.00</td>
<td>6.00</td>
</tr>
<tr>
<td>P2</td>
<td>26.00</td>
<td>2.00</td>
<td>3.00</td>
<td>15.00</td>
<td>5.00</td>
</tr>
<tr>
<td>P1</td>
<td>50.00</td>
<td>5.00</td>
<td>8.00</td>
<td>34.00</td>
<td>3.00</td>
</tr>
<tr>
<td>TOTAL</td>
<td>156.00</td>
<td>14.00</td>
<td>20.00</td>
<td>99.00</td>
<td>16.00</td>
</tr>
</tbody>
</table>
Cuadro 21. Segunda evaluación de cosecha.

<table>
<thead>
<tr>
<th>Clave</th>
<th>N° de planta</th>
<th>Número de frutos cosechados/planta</th>
<th>Sipé</th>
<th>Extra</th>
<th>Primer</th>
<th>Segundo</th>
<th>Tercero</th>
<th>Clave</th>
<th>N° de planta</th>
<th>Número de frutos cosechados/planta</th>
<th>Sipé</th>
<th>Extra</th>
<th>Primer</th>
<th>Segundo</th>
<th>Tercero</th>
</tr>
</thead>
<tbody>
<tr>
<td>T4</td>
<td>P4</td>
<td>8.00</td>
<td>6.00</td>
<td>2.00</td>
<td>J</td>
<td></td>
<td></td>
<td>T1</td>
<td>P4</td>
<td>9.00</td>
<td>8.00</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P3</td>
<td>20.00</td>
<td>1.00</td>
<td>16.00</td>
<td>2.00</td>
<td>1.00</td>
<td></td>
<td></td>
<td>P3</td>
<td>11.00</td>
<td>8.00</td>
<td>2.00</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P2</td>
<td>27.00</td>
<td>2.00</td>
<td>25.00</td>
<td>2.00</td>
<td></td>
<td></td>
<td></td>
<td>P2</td>
<td>13.00</td>
<td>10.00</td>
<td>3.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P1</td>
<td>13.00</td>
<td>13.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P1</td>
<td>16.00</td>
<td>14.00</td>
<td>2.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td>68.00</td>
<td>1.00</td>
<td>60.00</td>
<td>6.00</td>
<td>1.00</td>
<td></td>
<td>TOTAL</td>
<td>49.00</td>
<td>0.00</td>
<td>0.00</td>
<td>40.00</td>
<td>8.00</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>T3</td>
<td>P4</td>
<td>26.00</td>
<td>20.00</td>
<td>3.00</td>
<td>3.00</td>
<td></td>
<td></td>
<td>T4</td>
<td>P4</td>
<td>31.00</td>
<td>1.00</td>
<td>26.00</td>
<td>4.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P3</td>
<td>38.00</td>
<td>1.00</td>
<td>2.00</td>
<td>31.00</td>
<td>4.00</td>
<td></td>
<td></td>
<td>P3</td>
<td>27.00</td>
<td>1.00</td>
<td>23.00</td>
<td>2.00</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P2</td>
<td>41.00</td>
<td>1.00</td>
<td>39.00</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td>P2</td>
<td>30.00</td>
<td>1.00</td>
<td>24.00</td>
<td>4.00</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P1</td>
<td>24.00</td>
<td>24.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P1</td>
<td>36.00</td>
<td>1.00</td>
<td>32.00</td>
<td>3.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td>129.00</td>
<td>1.00</td>
<td>114.00</td>
<td>8.00</td>
<td>3.00</td>
<td></td>
<td>TOTAL</td>
<td>124.00</td>
<td>4.00</td>
<td>105.00</td>
<td>13.00</td>
<td>2.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T2</td>
<td>P4</td>
<td>28.00</td>
<td>20.00</td>
<td>5.00</td>
<td>3.00</td>
<td></td>
<td></td>
<td>T3</td>
<td>P3</td>
<td>24.00</td>
<td>1.00</td>
<td>3.00</td>
<td>20.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P3</td>
<td>62.00</td>
<td>2.00</td>
<td>4.00</td>
<td>50.00</td>
<td>6.00</td>
<td></td>
<td></td>
<td>P3</td>
<td>35.00</td>
<td>32.00</td>
<td>3.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P2</td>
<td>65.00</td>
<td>5.00</td>
<td>58.00</td>
<td>2.00</td>
<td></td>
<td></td>
<td></td>
<td>P1</td>
<td>60.00</td>
<td>3.00</td>
<td>54.00</td>
<td>2.00</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P1</td>
<td>42.00</td>
<td>1.00</td>
<td>32.00</td>
<td>6.00</td>
<td>3.00</td>
<td></td>
<td></td>
<td>P1</td>
<td>60.00</td>
<td>3.00</td>
<td>54.00</td>
<td>2.00</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td>197.00</td>
<td>2.00</td>
<td>160.00</td>
<td>19.00</td>
<td>6.00</td>
<td></td>
<td>TOTAL</td>
<td>170.00</td>
<td>1.00</td>
<td>9.00</td>
<td>153.00</td>
<td>6.00</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>P4</td>
<td>22.00</td>
<td>1.00</td>
<td>2.00</td>
<td>15.00</td>
<td>3.00</td>
<td>1.00</td>
<td>T2</td>
<td>P4</td>
<td>31.00</td>
<td>3.00</td>
<td>28.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P3</td>
<td>39.00</td>
<td>1.00</td>
<td>37.00</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td>P3</td>
<td>44.00</td>
<td>2.00</td>
<td>32.00</td>
<td>8.00</td>
<td>2.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P2</td>
<td>32.00</td>
<td>4.00</td>
<td>25.00</td>
<td>3.00</td>
<td></td>
<td></td>
<td></td>
<td>P2</td>
<td>38.00</td>
<td>7.00</td>
<td>25.00</td>
<td>4.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P1</td>
<td>52.00</td>
<td>1.00</td>
<td>2.00</td>
<td>47.00</td>
<td>2.00</td>
<td></td>
<td></td>
<td>P1</td>
<td>24.00</td>
<td>1.00</td>
<td>21.00</td>
<td>2.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td>145.00</td>
<td>2.00</td>
<td>124.00</td>
<td>9.00</td>
<td>1.00</td>
<td></td>
<td>TOTAL</td>
<td>137.00</td>
<td>2.00</td>
<td>13.00</td>
<td>106.00</td>
<td>14.00</td>
<td>2.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TOTAL</td>
<td>73.00</td>
<td>2.00</td>
<td>5.00</td>
<td>59.00</td>
<td>6.00</td>
<td>1.00</td>
<td></td>
</tr>
</tbody>
</table>
Cuadro 22. Tercera evaluación de cosecha.

<table>
<thead>
<tr>
<th>Clave</th>
<th>N° de planta</th>
<th>Número de frutos cosechados/planta</th>
<th>Súper</th>
<th>Extra</th>
<th>Primera</th>
<th>Segunda</th>
<th>Tercera</th>
<th>Clave</th>
<th>N° de planta</th>
<th>Número de frutos cosechados/planta</th>
<th>Súper</th>
<th>Extra</th>
<th>Primera</th>
<th>Segunda</th>
<th>Tercera</th>
<th>Clave</th>
<th>N° de planta</th>
<th>Número de frutos cosechados/planta</th>
<th>Súper</th>
<th>Extra</th>
<th>Primera</th>
<th>Segunda</th>
<th>Tercera</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>T₄</td>
<td>P₄</td>
<td>5.00</td>
<td>4.00</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T₁</td>
<td>P₄</td>
<td>4.00</td>
<td>4.00</td>
<td></td>
<td></td>
<td></td>
<td>T₂</td>
<td>P₄</td>
<td>3.00</td>
<td>3.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P₃</td>
<td>7.00</td>
<td>4.00</td>
<td>3.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P₃</td>
<td>6.00</td>
<td>6.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P₂</td>
<td>9.00</td>
<td>9.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P₂</td>
<td>5.00</td>
<td>5.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P₁</td>
<td>3.00</td>
<td>3.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P₁</td>
<td>3.00</td>
<td>3.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td>24.00</td>
<td>0.00</td>
<td>0.00</td>
<td>20.00</td>
<td>4.00</td>
<td>0.00</td>
<td></td>
<td>TOTAL</td>
<td>19.00</td>
<td>0.00</td>
<td>0.00</td>
<td>19.00</td>
<td>0.00</td>
<td>0.00</td>
<td>TOTAL</td>
<td>17.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T₃</td>
<td>P₄</td>
<td>7.00</td>
<td>1.00</td>
<td>6.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T₄</td>
<td>P₄</td>
<td>9.00</td>
<td>1.00</td>
<td>6.00</td>
<td>2.00</td>
<td></td>
<td>T₁</td>
<td>P₄</td>
<td>5.00</td>
<td>4.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P₃</td>
<td>12.00</td>
<td>10.00</td>
<td>2.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P₃</td>
<td>9.00</td>
<td>9.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P₂</td>
<td>14.00</td>
<td>10.00</td>
<td>2.00</td>
<td>2.00</td>
<td></td>
<td></td>
<td></td>
<td>P₂</td>
<td>3.00</td>
<td>3.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P₁</td>
<td>6.00</td>
<td>1.00</td>
<td>5.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P₁</td>
<td>7.00</td>
<td>7.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td>39.00</td>
<td>0.00</td>
<td>2.00</td>
<td>31.00</td>
<td>4.00</td>
<td>2.00</td>
<td></td>
<td>TOTAL</td>
<td>35.00</td>
<td>0.00</td>
<td>1.00</td>
<td>26.00</td>
<td>8.00</td>
<td>0.00</td>
<td>TOTAL</td>
<td>24.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T₂</td>
<td>P₄</td>
<td>8.00</td>
<td>5.00</td>
<td>2.00</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td>T₃</td>
<td>P₄</td>
<td>12.00</td>
<td>3.00</td>
<td>7.00</td>
<td>1.00</td>
<td>1.00</td>
<td>T₄</td>
<td>P₄</td>
<td>4.00</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P₃</td>
<td>14.00</td>
<td>1.00</td>
<td>12.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P₃</td>
<td>5.00</td>
<td>5.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P₂</td>
<td>17.00</td>
<td>2.00</td>
<td>14.00</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td>P₂</td>
<td>3.00</td>
<td>3.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P₁</td>
<td>11.00</td>
<td>1.00</td>
<td>8.00</td>
<td>2.00</td>
<td></td>
<td></td>
<td></td>
<td>P₁</td>
<td>3.00</td>
<td>3.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td>50.00</td>
<td>1.00</td>
<td>4.00</td>
<td>39.00</td>
<td>5.00</td>
<td>1.00</td>
<td></td>
<td>TOTAL</td>
<td>47.00</td>
<td>0.00</td>
<td>3.00</td>
<td>38.00</td>
<td>4.00</td>
<td>2.00</td>
<td>TOTAL</td>
<td>15.00</td>
<td>1.00</td>
<td>14.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T₁</td>
<td>P₄</td>
<td>7.00</td>
<td>7.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T₂</td>
<td>P₄</td>
<td>7.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T₃</td>
<td>P₄</td>
<td>5.00</td>
<td>4.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P₃</td>
<td>11.00</td>
<td>10.00</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P₃</td>
<td>4.00</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P₂</td>
<td>9.00</td>
<td>1.00</td>
<td>7.00</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td>P₂</td>
<td>10.00</td>
<td>8.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P₁</td>
<td>16.00</td>
<td>15.00</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P₁</td>
<td>7.00</td>
<td>6.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td>43.00</td>
<td>0.00</td>
<td>1.00</td>
<td>39.00</td>
<td>3.00</td>
<td>0.00</td>
<td></td>
<td>TOTAL</td>
<td>39.00</td>
<td>1.00</td>
<td>2.00</td>
<td>33.00</td>
<td>3.00</td>
<td>0.00</td>
<td>TOTAL</td>
<td>26.00</td>
<td>2.00</td>
<td>21.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Nota: El cuadro muestra los resultados de la tercera evaluación de cosecha, donde se registran los números de frutos cosechados por planta en cuatro diferentes categorías: Súper, Extra, Primera y Segunda. Las columnas B1, B2 y B3 presentan los datos para tres diferentes cultivos o tratamientos, respectivamente.
Cuadro 23. Cuarta evaluación de cosecha.

<table>
<thead>
<tr>
<th></th>
<th>Clave</th>
<th>N° de planta</th>
<th>Número de frutos cosechados planta</th>
<th>Súper</th>
<th>Extra</th>
<th>Primera</th>
<th>Segunda</th>
<th>Tercera</th>
</tr>
</thead>
<tbody>
<tr>
<td>T4</td>
<td>P4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>10.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>10.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>T3</td>
<td>P4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>15.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
<td>10.00</td>
<td>1.00</td>
<td>0.00</td>
</tr>
<tr>
<td>T2</td>
<td>P4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>19.00</td>
<td>1.00</td>
<td>0.00</td>
<td>1.00</td>
<td>17.00</td>
<td>1.00</td>
<td>0.00</td>
</tr>
<tr>
<td>T1</td>
<td>P4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>18.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>15.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>
Cuadro 24. Rendimiento de granadilla por categoría.

<table>
<thead>
<tr>
<th>Tratamiento</th>
<th>Súper</th>
<th>Extra</th>
<th>Primera</th>
<th>Segunda</th>
<th>Tercera</th>
<th>Suma</th>
</tr>
</thead>
<tbody>
<tr>
<td>T₁ = (Caldo bordalés)</td>
<td>19.0</td>
<td>47.0</td>
<td>525.0</td>
<td>57.00</td>
<td>10.0</td>
<td>658.0</td>
</tr>
<tr>
<td>T₂ = (Trichoderma)</td>
<td>42.0</td>
<td>98.0</td>
<td>699.0</td>
<td>97.00</td>
<td>22.0</td>
<td>958.0</td>
</tr>
<tr>
<td>T₃ = (Epoxiconazole + Pyraclostrobin)</td>
<td>34.0</td>
<td>82.0</td>
<td>737.0</td>
<td>87.00</td>
<td>19.0</td>
<td>959.0</td>
</tr>
<tr>
<td>T₄ = (Testigo)</td>
<td>19.0</td>
<td>50.0</td>
<td>459.0</td>
<td>75.00</td>
<td>9.0</td>
<td>612.0</td>
</tr>
</tbody>
</table>

Cuadro 25. Prueba de normalidad de Shapiro-Wilk, aplicado a los datos de las variables epidemiológicas.

<table>
<thead>
<tr>
<th>Variable</th>
<th>n</th>
<th>Media</th>
<th>D.E.</th>
<th>p-valué</th>
<th>Resultado</th>
</tr>
</thead>
<tbody>
<tr>
<td>N° de frutos totales</td>
<td>12</td>
<td>671.83</td>
<td>156.30</td>
<td>0.12</td>
<td>Datos normales</td>
</tr>
<tr>
<td>N° de frutos enfermos</td>
<td>12</td>
<td>406.25</td>
<td>169.77</td>
<td>0.44</td>
<td>Datos normales</td>
</tr>
<tr>
<td>N° de frutos sanos</td>
<td>12</td>
<td>265.58</td>
<td>133.68</td>
<td>0.24</td>
<td>Datos normales</td>
</tr>
<tr>
<td>Incidencia(A los 15)</td>
<td>12</td>
<td>18.54</td>
<td>6.36</td>
<td>0.30</td>
<td>Datos normales</td>
</tr>
<tr>
<td>Incidencia(A los 30)</td>
<td>12</td>
<td>18.45</td>
<td>9.21</td>
<td>0.27</td>
<td>Datos normales</td>
</tr>
<tr>
<td>Incidencia(A los 45)</td>
<td>12</td>
<td>13.46</td>
<td>6.54</td>
<td>0.21</td>
<td>Datos normales</td>
</tr>
<tr>
<td>Incidencia(A los 60)</td>
<td>12</td>
<td>3.10</td>
<td>1.93</td>
<td>0.31</td>
<td>Datos normales</td>
</tr>
<tr>
<td>incidencia acumulada</td>
<td>20</td>
<td>0.04</td>
<td>0.06</td>
<td>0.35</td>
<td>Datos normales</td>
</tr>
<tr>
<td>ADCPE</td>
<td>12</td>
<td>5.21</td>
<td>1.89</td>
<td>0.14</td>
<td>Datos normales</td>
</tr>
<tr>
<td>Tasa de infección</td>
<td>12</td>
<td>0.03</td>
<td>0.01</td>
<td>0.09</td>
<td>Datos normales</td>
</tr>
</tbody>
</table>