UNIVERSIDAD NACIONAL AGRARIA DE LA SELVA

FACULTAD DE RECURSOS NATURALES RENOVABLES

Departamento Académico de Ciencias de los Recursos Naturales Renovables

"INVENTARIO EXPLORATORIO DEL POTENCIAL MADERABLE EN LOS BOSQUES DE LA UNIVERSIDAD NACIONAL AGRARIA DE LA SELVA - TINGO MARIA"

TESIS

Para Optar el Título de :

INGENIERO EN RECURSOS NATURALES RENOVABLES

RICARDO CARDENAS SEIJAS

PROMOCION 1992 - I

"UNAS, FORJADORA DE PROFESIONALES PARA EL DESARROLLO DEL PAIS"

TINGO MARIA - PERU

DEDICATORIA

A MIS PADRES:

VICTOR y ELENA, por su amor, sabios consejos, constancia y el esfuerzo invalorable desplegado para el logro de mi carrera profesional.

A MIS HERMANOS:

Con amor fraternal.

AGRADECIMIENTO

Mi sincero agradecimiento a todas las personas e instituciones que han contribuido en la realización del presente trabajo de investigación, particularmente mi especial reconocimiento al:

Ing. Warren Ríos García, patrocinador, por su gran orientación profesional.

Ing. Itavelerh Vargas Clemente, copatrocinador, por su colaboración en la realización de los trabajos de campo.

Ing. José Ríos Trigoso, docente de la UNALM, por su aporte en la identificación de las muestras botánicas.

Sr. Aniceto Daza Yomona, técnico del herbario de la UNALM, por su orientación en el manejo del material botánico y bibliográfico.

Ing. Msc. José Loayza Torres, docente de la UNAS, por su apoyo en el préstamo de materiales y equipos para la colección de muestras botánicas.

Ing. Agr. Helmer Sierra Porras, y al Ing. Msc. Julio Evaristo Chipana, por su apoyo en la conducción del trabajo.

Sr. Leyden Fuchs Donaire y Miguel Ramírez Rengifo, por su aporte en la determinación de los nombres comunes de las especies evaluadas.

A todos aquellos que han contribuido con el desarrollo del presente trabajo de investigación.

INDICE

			Pág.
I.	INTR	ODUCCION	. 8
II.	ANTE	CEDENTES	. 10
	2.1.	Los recursos forestales en el Perú	. 10
		2.1.1. Características del recurso	
		forestal peruano	. 10
		2.1.2. Ubicación y extensión del	
		recurso forestal	. 11
	2.2.	Inventarios forestales	. 12
		2.2.1 Generalidades	. 12
		2.2.2 Definiciones	. 13
		2.2.3 Clasificación de los inventarios	
		forestales	. 14
		2.2.4 Muestreo forestal	. 19
	2.3.	Características en la medición de árboles .	. 22
		2.3.1. Número de árboles y diámetro	. 22
		2.3.2. Altura	. 25
		2.3.3. Volumen	. 26
	2.4.	Inventarios forestales en el Perú	. 29
III.	MATER	RIALES Y METODOS	. 33
	3.1.	Area experimental	. 33
	3.2.	Metodología de la ejecución	. 34
		3.2.1. Fase de pre-campo	. 34
		3.2.2. Fase de campo	. 35
		3.2.3. Fase de gabinete	. 39

		Pág.
IV.	RESULTADOS	. 44
	1. Volumen maderable (Comercial, aprovechable	
	y recuperable) del bosque forestal y	
	protección de la UNAS	. 44
	a. Arboles con fuste 1	. 44
	b. Arboles con fuste 2	. 50
	c. Arboles con fuste 3	. 53
•	2. Número de árboles	. 57
	a. Bosque forestal	. 57
	b. Bosque de protección	. 57
	3. Composición florística	. 58
٧.	DISCUSION	. 74
	1. Volumen maderable(comercial, aprobechabe	
	y recuperable) del bosque forestal y de	-
	protección de la UNAS	. 74
	2. Número de árboles	. 77
	3. Composición florística	. 79
VI.	CONCLUSIONES	. 81
VII.	RECOMENDACIONES	. 83
VIII	RESUMEN	. 83
Х.	BIBLIOGRAFIA	86
Х.	ANEXO	91

વ

INDICE DE CUADROS

COM		rag
1	Volumen comercial, aprovechable y recuperable	
	total de árboles con fuste 1, por hectárea y	
•	volumen estimado del BRUNAS. 1995	. 46
2	Volumen comercial, aprovechable y recuperable	
	total de árboles con fuste 2, por héctarea y	
	volumen estimado del BRUNAS. 1995	. 53
3	Volumen comercial, aprovechable y recuperable	
	total de árboles con fuste 3, por héctarea y	
	volumen estimado del BRUNAS. 1995	. 54
4	Análisis estadístico del volumen comercial	
	de árboles totales según condición de fuste	
	en el bosque forestal y de protección de la	
	UNAS. 1995	. 56
5	Número de árboles y porcentaje de distribución	
	por condición de fuste y categorias diamétricas	
	del bosque forestal y de protección de la UNAS	
	1995	. 59
6	Análisis estadístico del muestreo del número de	
	árboles totales según condición de fuste en el	
	bosque forestal y de protección de la UNAS. 1995	. 62
7	Composición florística del bosque reservado de	
	la UNAS. 1995	. 64
8	Orden de importancia de las especies en función	
	a la abundancia por categorias diamétricas en el	
	bosque forestal, BRUNAS. 1995	. 67
9	Orden de importancia de las especies en función	•
	a la abundancia por categorias diamétricas en el	

bosque de protección, BRUNAS. 1995 71

INDICE DE FIGURAS

FIGURA		
1	Valumen total Changus famoutal mág mactagaián/	
1	Volumen total/bosque forestal más protección/	
	comercial, aprovechable y recuperable de	
	árboles con fuste 1, según clases diamétricas	
	del BRUNAS. 1995	47
2	Variación del volumen en función a las clases	
	diamétricas por clase fustal del bosque	٠.
	forestal de la UNAS. 1995	48
3	Variación del volumen en función a las clases	
	diamétricas por clase fustal del bosque de	
	protección de la UNAS. 1995	49
4	Volumen total(bosque forestal más protección)	
	comercial, aprovechable y recuperable de	
	árboles con fuste 2, según clases diamétricas	
	del BRUNAS. 1995	52
5	Volumen total(bosque forestal más protección)	
	comercial, aprovechable y recuperable de	
	árboles con fuste 3, según clases diamétricas	
	del BRUNAS. 1995	55
6	Porcentaje de distribución del número de árboles	
	según clases diamétricas por condición de fuste en	
	el bosque forestal y de protección. UNAS 1995	60
7	Número total de árboles por fuste en el bosque	-
	forestal y de protección. UNAS. 1995	61

I. INTRODUCCION

La zona de sub trópico húmedo peruano representa un buen potencial de los recursos naturales, básicamente en lo relacionado a la actividad forestal y a sus mejores perspectivas futuras en el orden económico y social. Razón por el cual actualmente hay necesidad de desarrollar programas de investigación y extensión relacionadas con el fomento forestal, actividad que requiere de estudios adicionales de apoyo, tal como el estudio del inventario exploratorio del potencial maderable.

El potencial forestal de nuestra selva peruana se asocia con serios problemas característicos de esta zona, entre ellos las obras de infraestructura, la agricultura migratoria, que trae como consecuencia características negativas como la falta de protección de los suelos, regulación de los sistemas hídricos y desequilibrio del medio ambiente.

Las investigaciones hasta hoy efectuadas, indican la existencia de bosques con composición florística muy compleja tanto en los usos, como en las características de las especies maderables explotadas. Sin embargo, los problemas encontrados en la zona del Alto Huallaga, principalmente la destrucción indiscriminada de los bosques que trae consigo múltiples complicaciones del equilibrio ecológico, no han sido tomados en cuenta. La existencia de estos problemas en nuestra Ceja de Selva y la escasez de investigaciones han permitido la ejecución

del presente trabajo experimental, intitulado "Inventario Exploratorio del Potencial Maderable en los Bosques de la UNAS", a fin que los resultados sirvan para establecer una adecuada política de manejo integral y uso de los recursos forestales.

Los objetivos del trabajo son:

- 1.- Estimar el volumen maderable por ha a partir de 10 cm de diámetro a la altura del pecho (DAP).
 - 2.- Determinar la composición florística del bosque reservado de la UNAS.
 - 3.- Determinar el orden de importancia de las especies en función a la abundancia por categorias diamétricas.

II. ANTECEDENTES

2.1 LOS RECURSOS FORESTALES EN EL PERU

2.1.1 Características del recurso forestal peruano

Entre los recursos naturales que destacan en el Perú estan el forestal, pesquero, el minero, el económico y social.

Los bosques del territorio nacional es un recurso natural renovable y que puede ser manejado en forma directa por su demanda a nivel mundial de los productos forestales del trópico (23).

Ecológicamente los bosques en el Perú son clasificados bosques húmedos, como tropical y tropical, tiene composición florística heterogénea, estimado en más de 2,500 especies diferentes con 600 clasificadas. Esta gran diversidad de especies problemas crea para el manejo aprovechamiento forestal, desde el punto de vista de identificación, silvicultura y uso. Otro factor que dificulta el aprovechamiento forestal, especialmente en Ceja de Selva es la topografía y la falta de vías de comunicación (19).

Las especies forestales aprovechadas

solamente alcanzan el 10% del total de las identificadas, de estos unos 10 tienen una extracción intensiva por sus buenos precios en el mercado nacional y de exportación. Actualmente se viene incrementando el uso de nuevas especies para usos en la industria de laminado, madera prensada, etc. (23).

2.1.2 Ubicación y extensión del recurso forestal

Los recursos forestales del territorio nacional gran parte se encuentra en condiciones del trópico, se han asumido que bordea el 60% del área territorial con unos 70'000,000 hectáreas de bosques de las cuales sólo en parte ha sido aprovechada (23).

El Perú es el segundo lugar en Sudamérica, después del Brasil, en cuanto a hectareage forestal. Pero, cuenta con la necesidad de ubicar y clasificar sus recursos forestales, según sus características generales; delimitar las áreas que deben quedar para producción permanente o para protección; determinar las regiones con bosques que, sea motivo para el desarrollo inmediato de la industria forestal; señalar las zonas potencialmente aptas para el desarrollo de programas de reforestación para producción de

maderas y/o protección; se necesita también ubicar los bosques que por sus condiciones actuales de aprovechamiento deben someterse a planes de ordenación (23).

2.2 INVENTARIOS FORESTALES

2.2.1 Generalidades

Los inventarios forestales suelen considerarse como sinónimos de estimaciones la cantidad y calidad sobre de madera existente en un bosque (12). Un inventario forestal completo debe incluir una descripción general de la zona forestal y de características legales para aprovechamiento del área, así como cálculos de las existencias maderables según las especies forestales (número de árboles por categorías diamétricas y disponibilidad volumétrica, etc) y cálculos de los incrementos y de las mermas, principalmente debidas a pérdidas por el estado fitosanitario y defectos físicomecánicos del árbol. Se pretende así obtener la suficiente información para lograr un tratamiento del bosque acorde con su condición de recurso natural renovable (9).

Previo a la toma de datos del terreno, el área se estratífica en base a fotografías

aéreas u otros medios. La estratificación o división del área tiene por finalidad ubicar y delimitar sub-áreas de características similares, a fin de perfeccionar el estudio e inventario del área (9).

Los criterios de estratificación pueden ser varios, desde el punto de vista de la clasificación de tierras por capacidad de uso mayor y de utilización industrial del recurso (9).

2.2.2 Definiciones

El inventario forestal es el conteo o identificación de árboles que se hace en el bosque para saber que hay, cuánto hay y dónde está la madera, con la finalidad de organizar posteriormente su extracción (5).

El propósito del inventario es dar una información sobre la composición florística, tipos de bosques, según los grandes patrones fisiográficos y alguna información adicional sobre el potencial del contenido volumétrico de la madera en pie o la descripción de la fauna, cuando se trata de estudios de la vida silvestre (23).

2.2.3 Clasificación

Clasificación de los inventarios forestales

La mejor forma de poder definir el inventario más adecuado para una determinada superficie, es a través de la clara y completa definición de los objetivos y metas que se desean alcanzar, Esta definición de objetivos debe preceder a cualquier acción dentro del inventario, facilitándose así la planificación y el diseño del mismo (9).

Los criterios de clasificación de inventarios pueden resumirse en los siguientes:

a. Método estadístico; puede ser:

Inventario al 100%

Significa la medición, control o conteo de todos los individuos, elementos parámetros de la población, capaces de evaluados o procesados en base a sus características cuantitativas у/о cualitativas. Este inventario es bastante simple pero su ejecución es laboriosa, dependiendo del área a inventariarse, es realizado desde 2 puntos de vista: Costo y precisión (18).

Inventario en base a muestreo

base а éste método la ciencia estadística permite obtener información correcta, precisa y a bajo costo de una población, es decir, realizar ingerencias de toda la población llamada correctas muestra; cuanto más grande sea la muestra habrá mayor estrechez entre los datos del muestreo con la población, sin embargo, existen métodos o diseños de muestreo que permiten obtener buen un resultado utilizando muestras pequeñas con una baja intensidad de muestro.

b. Por el objeto del inventario:

Evaluación del potencial maderero o stock actual

Tiene como objetivo hacer una evaluación rápida del bosque con el fin de conocer la disponibilidad volumétrica actual, puede ser sobre el volumen total, es decir, todas las especies o sobre determinadas especies, de acuerdo a su uso. Mayormente es utilizado para evaluar el potencial de determinados bosques de acuerdo con su capacidad de producción y para hacer estimaciones sobre disponibilidad de stock,

prevee información limitada; el parámetro más importante es el promedio de volumen por unidad de superficie para toda área evaluada.

Su ejecución es simple tanto en el diseño y recolección de datos en el campo. Su uso esta referido a evaluación de determinados rodales o de bosques homogéneos, especialmente plantaciones.

Evaluación para un plan de aprovechamiento forestal o plan de extracción

Es un método que requiere de un trabajo más completo que en el primer caso, además de conocer el stock actual de volumen, es necesario conocer o evaluar las características del área, con fines de extracción. Es utilizado con mayor frecuencia en bosques tropicales que no están bajo programa o plan de manejo.

El parámetro más importante es el volumen, siendo necesario su discriminación por especies y por tamaños, de acuerdo con los tipos de bosques, su planeamiento y diseño requiere de una mayor conocimiento y experiencias en inventariación.

c. Por el grado de detalle:

Reconocimiento general

Consiste en una evaluación rápida del potencial forestal de una determinada superficie, con el fin de calificarla "apriori" como apta o no apta para una cierta actividad económica, no requiere de datos cuantitativos precisos sino ordenes de magnitud, tampoco es importante el error estadístico y por lo general, es necesario ningún tipo de muestreo de campo (18).

Inventario exploratorio

Tipo de evaluación que da mayor énfasis al área de los tipos de vegetación, formaciones ecológicas, el uso de la tierra y la accesibilidad. Las muestras pueden distribuidas al azar sistemáticamente, para obtener una variancia o coeficiente de variación sirva de base para la aplicación de diseños nivel semi-detallado posteriores a detallado. Los parámetros que se toman en cuenta son: el volumen, el área basal, o número de individuos por unidad de área (23).

La información cuali-cuantitativa sirve para tomar una decisión sobre el uso o forma más apropiada del aprovechamiento del área, pudiéndose utilizar sus datos para la elaboración de proyectos o planes preliminares de manejo.

El error de muestreo es considerado de ±15 o 20% sobre la media del volumen total, con un nivel de confiabilidad del 95% (18).

Inventario semi-detallado

Considera además de la delimitación de las unidades mencionadas en el nivel anterior del inventario de los recursos forestales, ajustándose a un error estandar la muestra de 10 a 20 % y un nivel probabilidades de 0.05. Se incluyen estos estudios los inventarios para ordenación de bosques, planes de extracción, información básica estudios de factibilidad de industrias forestales (23).

Inventario detallado

Su finalidad es proporcionar una información detallada de la composición florística, volumen maderable marcado para

subasta al 100%, o con un diseño de inventario con un error estandar menor del 10% a un nivel de probabilidades del 0.01.

La escala de trabajo es de 1/50,000 y mayores, con una separación estricta de los tipos de vegetación o estratificación de la población para una mayor eficiencia de la muestra (23).

2.2.4 Muestreo forestal

El muestreo forestal es la toma de una fracción representativa de una población y que sirve para la estimación de los parámetros de una población. Esto implica que existe un error de muestreo entre los valores reales y los estimados de la población para un determinado nivel de probabilidades (9).

La intensidad del muestreo, el porcentaje de aforo varia del 1 al 25%. Para grandes extensiones (cientos de hectáreas) corresponde 1% y para pequeñas extensiones 25%.

Para una extensión de bosque de 1,000 Ha, un porcentaje de aforo del 1% representa 10 has y un porcentaje de aforo del 25% representa 250 Has. Cualquiera sea el área escogida se procede aforar el bosque-medio y contar el número de árboles que existen en una

área dada, para determinar el volumen correspondiente (16).

Métodos de muestreo

a. Método de fajas de muestreo

Consiste en inventariar el bosque mediante parcelas de muestreo de forma rectangular; cuyo largo es varias veces el ancho. Este sistema es muy popular en trabajos de inventarios en bosques naturales, subtropicales y tropicales, debido a que una buena distribución de las permite muestras mediante cortes transversales en el bosque; además, permite una posible estratificación У la toma de datos complementarios con pendientes, suelos, etc., mediante este procedimiento muestreo se pueden también elaborar análisis estructurales, tan importantes en las condiciones de los bosques tropicales, subdividiendo las fajas en parcelas más pequeñas de un largo de 100 m (18).

En las condiciones de bosques tropicales, el ancho más comúnmente usado en las fajas de muestreo es de 10 m, con largos variables desde 100 m, lo que da

exactamente una ha, facilitándose grandemente el procesamiento de datos ya que casi siempre se presentan los resultados referidos a la ha. En condiciones de bosques puros o plantaciones de fácil acceso, se pueden usar ancho de 20 o más metros (18).

b. Método de muestreo de parcelas en línea

Consiste en establecer líneas de muestreo, que parten generalmente de una línea base, a lo largo de estas líneas se distribuyen parcelas de muestreo distanciadas en forma constante, por ejemplo, cada 200 ó 300 m una de otra.

Estas parcelas pueden ser de diferentes formas (rectangulares, circulares, etc) dependiendo del tipo de bosque y de las facilidades para controlar los tamaños de los lados o el radio del círculo para el caso de parcelas circulares (18).

2.3 CARACTERISTICAS EN LA MEDICION DE ARBOLES

2.3.1 Número de árboles y diámetro

El número de árboles es uno de los parámetros más importantes del bosque y su conocimiento es de primerísima importancia, con el fin de inferir u obtener resultados sobre los demás parámetros. No es útil su conocimiento, si no está, a la vez vinculado con el diámetro, la altura y/o el volumen (17).

Los árboles, enel bosque, se encuentran desde su primera fase de crecimiento (plántulas) hasta el estado de total madurez, por lo tanto, es posible encontrar una gama muy amplia de valores, con valores mínimos y máximos con enorme diferencia (17). El reconocimiento de la colección de muestras botánicas es de vital importancia ya que de ello depende la determinación del número de árboles por especie (24).

Los nombres vulgares o comunes de los árboles, no basta para la identificación de la especie, sino que también es necesario los nombres científicos (4), también es necesario e importante el empleo del nombre botánico de las especies, previa utilización de los

catálogos para la identificación de la flora en los bosques de la amazonía peruana (7, 25 y 28).

La heterogeneidad florística es importante tener en cuenta ya que, si bien la mayor parte de las especies siguen tendencias exponenciales, existen muchas especies que tienen distribuciones diferentes por eso será conveniente medir a partir del diámetro más pequeño para lograr una buena representación, ello es posible conseguir a partir de la toma de diámetros muy pequeños (10 cm o menos) y en la muestra principal a partir de un tamaño comercial que puede ser de 25 ó 30 cm de DAP (8).

A medida que las condiciones edáficas son más venebolentes (mejor drenaje, nutrientes) la flora es proporcionalmente más compleja y heterogénea, y conforme presentan mayores limitaciones características específicas de rodales, paralelamente presenta una selección se de natural las especies y cuanto limitaciones existan en el terreno, menor será el coeficiente de mezcla de las especies, es decir que el bosque se hace más homogéneo 17).

Las características del volumen ynúmero de árboles, tienen distribución normal, característica de una campana. La distribución de Poisson es aquella en que la variación de las características no tiene un límite superior fijo, y se forma al realizar conteos en la que predomina clases de frecuencias que no aparecen en la muestra.

La amplitud de los rangos o clases diamétricas es un factor que, en cierto modo, influye sobre la forma o curva de distribución por clases diamétricas, del número de árboles total o por especies, así una agrupación por clases diamétricas amplias determinará curvas fuertes poco sensibles; según Loetch (13) el rango óptimo para una buena representatividad de la curva, estaría dado por:

Valor máximo - Valor mínimo

2

En un bosque natural, la curva de distribución de frecuencias de clases diamétricas (o tamaños) de los árboles, es semejante a una J invertida (curva exponencial), es decir, un alto número de

individuos por clases diamétricas pequeñas.

La medición del diámetro se toma en la base sobre el eje del árbol y la altura del medidor (1.30 m. de altura) (5), IUFRO (Citado por Malleux (15)), ha propuesto, por lo menos a nivel de investigación, se tenga como estandar 1.30 m de altura como diámetro a la altura del pecho (DAP) en vista de la disparidad de 1.50 m (Francia), 1.30 m (Europa Central y algunos países de América Latina).

2.3.2 Altura

La altura de un árbol es una variable continua y sus límites extremos, inferior y superior no corresponden a puntos fijos sino relativos, de acuerdo al uso, características o estado de los árboles (17). Las alturas se determinan por medio de mediciones lineales tomadas desde un punto de referencia, hasta los puntos que interesan y en sentido vertical (1, 5).

La altura total es la distancia considerada desde el nivel del suelo hasta el ápice del árbol, asumiendo que éste es recto y vertical. La altura del fuste, considerada como la altura limpia del tronco principal, es

la distancia entre el nivel del suelo y el punto de inicio de la copa. La altura comercial es la porción utilizable del árbol, si es de uso integral incluyendo todo el fuste y ramificaciones aprovechables, se denomina altura comercial total y si es de uso específico que incluye el fuste aprovechable, se le considera como la altura comercial aserrable (17, 1).

2.3.3 Volumen

El volumen es la resultante más importante del inventario forestal, como indicador del potencial o capacidad de producción del bosque, su cálculo se establece en base al área resultante del DAP, multiplicado por la altura comercial y el coeficiente de forma 0.7 (17).

El volumen total se refiere al total de madera que se encuentra en el bosque por unidad de superficie o para el área total; y el volumen aprovechable (comercial) es la madera que puede ser aprovechable descontándose los defectos o volúmenes inservibles (17, 5).

La sección transversal de un árbol a la altura de 1.30 m conocido como área basal o

basimétrica es el resultado aproximado de aplicar una fórmula del diámetro de la circunferencia y es un parámetro que influye en el volumen (17, 1).

En un bosque natural, la dispersión de los volúmenes a nivel de muestras sigue una distribución de tipo normal, lo que indica que los volúmenes están distribuidos en forma aleatorio o causal, a pesar de los efectos causales que se puedan presentar a nivel de sitios específicos o rodales; pero, sin embargo, esta distribución complica la elaboración de los diseños o esquemas de muestreo.

Los datos sobre volumen también pueden estar referidos a las clases diamétricas, con lo que se obtiene referencia sobre el aporte volumétrico de cada grupo de tamaños de árboles, de acuerdo a su diámetro. Este aporte de volumen está en función de dos parámetros:

- a. El tamaño mismo de los árboles (a mayor tamaño más volumen).
- b. El número de árboles por clases diamétricas, donde también se presenta una relación directamente proporcional (8).

Estudios en diferentes tipos de bosques, han determinado que en la distribución de por clases diamétricas, volúmenes diámetros mayores, si bien aportan con mayor volumen por unidad de árbol, a nivel del conjunto de árboles aportan con menos volumen. Esta distribución corresponde una correlación lineal inversamente proporcional Y = a-bx, lo que indica que el bosque natural clímax es poco eficiente en la producción de volúmenes de madera, ya que la competencia o lucha por la sobrevivencia determina una fuerte eliminación de árboles dejando un número muy escaso de tamaño comercial o productores de volumen aprovechable; sin embargo para ello han debido pasar muchos años (17).

En los árboles entre los 25 hasta 70 cm de DAP, sus volúmenes aumentan en forma acelerada y a partir de este límite se presenta una inflexión o desaceleración en la curva, lo que indica que los árboles mayores de este diámetro ya no son comparativamente productivos, por lo que deben eliminarse.

La variación de volúmenes totales por tipos de bosque se refleja también a nivel de cada especie, debido al carácter selectivo de calidades de sitio que tienen las diferentes especies, lo cual hace variar sustancialmente el orden de importancia volumétrica de las especies en los diferentes tipos de bosques (17, 3).

2.4 INVENTARIOS FORESTALES EN EL PERU

En el Perú, los trabajos de inventarios forestales se realizaron desde 1950 (9), destacan en orden de superficie boscosa evaluada el inventario forestal semidetallado del Bosque Nacional Alexander abarcó en Von Humbolt, que un principio una 560,000 superficie boscosa de ha (20).Posteriormente trabajos cartográficos determinaron que la superficie del Bosque Nacional Von Humbolt, en realidad es de 645,000 ha, destacando un total de 23,655 árboles, con el 65.3% de árboles de 40 cm, y sólo 10.2% a la clase de árboles emergentes o gigantes (más de 70 cm de DAP). También determinaron que el 28% del número total de árboles son de valor comercial que hacen un 34% en términos de volumen (11).

Un estudio de inventario forestal estratificado utilizando las mismas fajas en parcelas 10 x 1000 m en el bosque de Jenaro Herrera, han determinado que los valores de las pruebas estadísticas por efecto de la estratificación se reducen de 41.80% a 20.36%

para el coeficiente de variación y de 8.27% a 4.03% para el error de muestreo con lo que logran reducir el tamaño de la muestra a la vez que se aumenta la precisión (6).

En 1962, en el inventario exploratorio de 113,790 ha de la zona Tingo María - Tocache, determinaron un apreciable volumen maderable de 22,537 pies tablares/ha y un total de 2,403°232,000 pies tablares (27).

Estudios de inventario forestal del Río Tambo-Gran-Pajonal, encontraron 25 árboles diferentes de 40 cm de DAP y un volumen de 60 m/ha similar estudio en la zona del Alto Marañón encontraron 90 especies diferentes mayores de 35 cm de DAP con un volumen de 126 m/ha, en la zona del Río Santiago se halló 31 especies diferentes mayores de 40 cm de DAP, con 69 m/ha, en la zona del Río Perené se halló 28 especies diferentes mayores de 40 cm de DAP, con 77 m/ha, en Madre de Dios, zona de Inambari se obtuvo 95 m/ha, con 82 especies diferentes y mayores a 40 cm de DAP, en Tingo María se encontraron 75 especies diferentes mayores de 10 cm de DAP, con un volumen comercial de 102 m/ha (16).

En 1966, en el inventario exploratorio de los bosques de la Unidad Técnica de Capacitación Forestal de la Provincia de Leoncio Prado, obtuvieron un volumen maderable de 125.4 m/ha en especies mayores a

25 cm de DAP y una densidad de 197.4 árboles/ha (10).

En Aucayacu (1966), en los bosques de la Unidad Técnica de Capacitación Forestal, como resultado del inventario exploratorio de 2,000 ha, obtuvo un volumen maderable de 143.129 m/ha, con mínimo de 20 cm de DAP, la relación del DAP y el número de árboles/ha en los bosques de colina tuvo la forma de una J invertida, siendo menor el número de árboles a mayor DAP (22).

En la SAIS Pampa-Pucallpa (1974), encontraron recursos forestales en el bosque aluvial clase I, un volumen comercial total de 103.44 m/ha, en la clase III, 77 m/ha, en la clase II es baja y en la clase de bosque IV es definitivamente muy pobre (17).

El cálculo de volumen de los bosques tropicales del Perú, tienen un valor medio de 0.7 de factor de forma (f), el empleo de 0.6 y 0.8 puede causar error en el cálculo del volumen (2).

En el inventario forestal de los bosques secundarios de Pucallpa-San Alejandro, encontraron que el 63% de los individuos se encontraron en la primera clase diamétrica de 5-9 cm y el 99% entre 5 y 34 cm. La distribución del volumen es asimétrica, siendo la segunda clase diamétrica (10-14 cm), la que más aporta con el 22.44% al total (29).

El inventario forestal en 1985, en el distrito forestal de Atalaya (Ucayali), que abarca 664,960 ha,

concluyeron que la zona estudiada tiene un potencial forestal muy bueno, con un promedio de 164.035 m³/ha de volumen comercial y 81.477 árboles/ha, habiéndose registrado 6,190 árboles en 76 ha muestreadas (21).

III. MATERIALES Y METODOS

3.1 AREA EXPERIMENTAL

3.1.1 Ubicación y extensión

El trabajo se realizó de Enero a Diciembre de 1993, en el Bosque Reservado de la Universidad Nacional Agraria de la Selva (BRUNAS), con un área de 295 ha de aptitud forestal y de protección. Políticamente ubicado en la Provincia de Leoncio Prado, Departamento de Huánuco, Región Andrés Avelino Cáceres, a 2.5 Km de la Ciudad de Tingo María.

Geográficamente, está ubicada en la ceja de selva entre la paralela 09°08'05" latitud sur y el meridiano 75°57'07 longitud oeste, a una altura de 641 msnm.

3.1.2 Fisiografía

Por su ubicación en la ceja de selva, presenta una fisiografía predominante de colinas con relieve ondulado quebradiza, con pendientes que van de 20 a 50%.

3.1.3 Ecología

Según el mapa ecológico del Perú actualizado por la Oficina Nacional de Evaluaciones de los Recursos Naturales (ONERN), pertenece a un bosque muy húmedo pre-

montano tropical (bmh-Pt).

3.1.4 Vegetación

La formación boscosa tiene las condiciones favorables para el desarrollo y crecimiento de la vegetación natural, las especies que comunmente predominan en el área en estudio y en toda la zona tenemos: Cedro (Cedrela odorata), Caoba (Swietenia macrophylla), Lagarto caspi (Calophyllum sp.), Shimbillo (Inga sp), Requia (Guarea sp), Anallo caspi (Cordia sp), Manchinga (Brosimum sp), Moena negra (Nectandra sp), Canela mohena (Ocotea laxiflora), Huayruro (Ormisia sp), Cumala (Virola sp), Chicharra caspi (Jacaranda sp), Cetico (Cecropia sp), Tulpay (Clarisa racemosa), etc.

3.2 METODOLOGIA DE LA EJECUCION

3.2.1 Fase de pre-campo

a. Recopilación

Etapa donde se analizaron el material bibliográfico y cartográfico recopilado de la zona en estudio.

b. Fotointerpretación y mapeo

Con el material cartográfico se determinó el área y mapa preliminar en el cual se incluye la red de drenaje y ubicación de los bloques dentro de las unidades diferenciales (bosque de aptitud forestal (F) y de protección (X)).

c. Planeamiento del inventario exploratorio

Se eligió el diseño de muestreo al azar estratificado de acuerdo a la característica, fisiográfica del terreno en un área de 149 ha. de bosque de aptitud forestal y en 146 ha. en el bosque de protección (14).

3.2.2 Fase de campo

a. Diseño de muestreo

Para la evaluación exploratoria, se empleó el muestreo sistemático de fajas discontinuas en tres zonas ubicadas al azar, con una intensidad de muestreo del 1% que representa 3 ha de bosque evaluado.

Bloque

Se considero como una división cartográfica del terreno de 1 ha de

extensión, ubicándose dos bloques (I y II) en el bosque forestal y un bloque (III) en el bosque de protección (Figura 8). Siguiendo un rumbo de 50° SE con respecto al norte, cuyas longitudes y latitudes correspondientes fueron: 91°39′36" - 71°6′00"(block I); 91°31′12" - 70°13′12"(block II) y 91°58′12"- 72°34′48"(block III).

Parcelas

Cada parcela cubre 0.25 de ha, cuyas dimensiones son de 250 x 10 m, orientados con azimut de 90°; la separación de la línea base entre parcelas fue de 100 m (Figura 9).

Subparcelas

Se denominada así a la subdivisión de las parcelas en rectángulos de dimensiones uniformes de 25 x 10 m (250 m²). Las 10 subparcelas que hacen 0.25 ha constituyen la unidad de muestreo (figura 10).

b. Distribución de muestras

Se tomó en cuenta las características del bosque según la figura 8 para que las muestras a inventariarse sean representativas de la población.

c. Acceso y apertura de trochas

La apertura de las trochas bases se hicieron en función a la ubicación de los bloques empezando del "punto cero", se inició con el aforo siguiendo las azimuts 0°, 90°, 180° y 270°, paralelamente a la apertura de la trocha base. Las trochas sirvieron de acceso para el recorrido del muestreo.

d. Conformación de la brigada y la instrucción del personal

La brigada fue formada por :

- Un aforador responsable del registro de datos.
- Un matero, encargado de la determinación de los nombres comunes de las diferentes especies evaluadas,
 DAP y estimación de las alturas.
- Un trochero, encargado de la apertura de trochas.
- Un marcador de distancias de base a distancias fijas.
- Un ayudante, encargado de enumerar los árboles evaluados.

Se adiestró a las personas que formaban la brigada, sobre todo para asegurar una buena toma de información, como la identificación de las especies, registro de datos, número de plantas, manejo de la forcipula para la toma del DAP, y la medición de la altura con la regla graduada, etc.

e. Obtención de la información

La obtención de datos de las subparcelas se realizaron tomando en cuenta a las especies arbóreas a partir de los 10 cm de DAP y los 3 m de altura como mínimo.

Los datos de campo fueron tomados en el orden siguiente:

Número de árbol

Corresponde a la numeración correlativa de las especies encontradas al paso del recorrido del inventario propiamente dicho.

Especies

Los árboles fueron clasificados por especies y por sub-parcelas inmediatamente

identificándose por el nombre común dado por el matero, o por el nombre científico de las especies conocidas. Las especies no identificadas debidamente, fueron registradas mediante claves para su reconocimiento taxonómico en la Universidad Nacional Agraria La Molina.

Diámetro a la altura del pecho (DAP)

Se inventarió arboles con igual o más de 10 cm de DAP. La medición se hizo en forma directa utilizando la forcípula graduada en centímetros con aproximación de 0.5 cm.

Se tomó la longitud del árbol desde su base hasta el punto de inicio de su ramificación principal o punto de copa. Se midió con la ayuda de una regla graduada de 3 metros de altura.

3.2.3. Fase de Gabinete

Las características evaluadas de las especies registradas como clases diamétricas, altura comercial, diámetro de planta, fueron sometidos al análisis y/o clasificación:

a. Identificación y clasificación de las

especies

Previa identificación por familia y según los nombres comunes y científicos se elaboró el cuadro de la composición florística de BRUNAS.

b. Volumen comercial (m).

Fueron agrupados en 4 categorías diamétricas; 10-39, 40-69, 70-99, y mayores de 100 cm de DAP considerados como tratamientos; y por condición de fuste (1, 2, 3), para árboles rectos (1), para árboles ligeramente sinuadas (2) y para árboles muy irregulares (3). Para luego estimar el volumen comercial mediante la formula (2):

 $VC = HC \times AB \times Cf$

Donde:

HC = Altura comercial (m)

AB = Area basal : 0.7854 d

Cf = Factor de forma : 0.7

VC = Volumen comercial (m3)

c. Volúmen aprovechable (m³)

Variable estimada según clases diamétricas y fustal, los cálculos se hicieron mediante la fórmula:

 $Va = VC \times 0.75$

Donde :

Va = Volumen aprovechable

Vc = Volumen comercial

0.75 = Constante de conversión

d. Volumen recuperable (m³)

Variable estimada según clases diamétricas y fustal, los cálculos se hicieron mediante la fórmula:

 $Vr = Vc \times 0.65$

Donde :

Vc = Volúmen comercial

Vr = Volumen recuperable

0.65 = Constante de conversión

e. Distribución del número de árboles

Variable estimada en base al número total de árboles y el número de árboles por fustes en los bosques de protección.

f. Análisis estadístico

Las características del número total de árboles y el volumen total comercial del muestreo fustal del inventario exploratorio, tanto del bosque forestal y de protección, se sometieron a las pruebas de:

.

Promedio $x = \sum x/n$

Desviación estandar s = $\sqrt{\sum x^2 - (\sum x)^2/n}$

n-1

Error estandar $SX = S/\sqrt{n}$

Error de muestreo $sX\% = s\bar{x}/\bar{x} \times 100$

Donde: X = Número de árboles por unidad de muestreo o volumen comercial por unidad de muestreo por tipo de fuste.

n = Número de unidades evaluadas.

g. Análisis de regresión

Se hizo en base a la :

- Variable independiente (X) : Clases diamétricas por tipo de fuste 1, 2, 3
- Variable dependiente (Y): Volumen comercial por tipo de fuste 1, 2, 3, para árboles rectos, ligeramente sinuados y muy irregulares respectivamente.

El incremento o disminución del muestreo registrada según clases diamétricas del inventario exploratorio se sometieron al mejor ajuste de los modelos de regresión lineal y no lineal:

-Lineal Y = a + bX

-Logarítmica $_{a}Y = a + b lnX$

-Exponencial $Y = ae^x$

-Potencia $Y = AX^b$

IV. RESULTADOS

4.1 VOLUMEN MADERABLE (comercial, aprovechable y recuperable) DEL BOSQUE FORESTAL Y PROTECCION DE LA UNAS.

Los resultados del inventario exploratorio del potencial maderable del BRUNAS, se ha ordenado en base a la condición de fuste de todas las especies que se encuentran ubicadas en los rodales de los bosques secundarios (forestal y protección).

A. ARBOLES CON FUSTE 1

En los resultados del Cuadro 1, de los volúmenes del bosque forestal y de bosque de protección en base a los valores máximos y mínimos para cada clase diamétrica, podemos observar la variación del volumen por clase diametral, siendo mayor en árboles con clase diamétrica de 10-39 cm, seguido de 40-69 cm en ambos tipos de bosque.

El volumen total (volumen bosque forestal + protección) del BRUNAS, así como el volumen total aprovechable y recuperable, mostrada en el Cuadro 1 y Figura 1, mantiene el mismo patrón de volumen para cada bosque, siendo mayor con el 49.451 % de volumen, 42.288 % y 8.262 % respectivamente. No existiendo árboles mayor a 100 cm de clase diamétrica en este tipo fustal.

En la Figura 2 (Bosque forestal) y Figura 3 (Bosque de protección), se indica que el promedio de variación del volumen en el bosque forestal es de 67.70 (Fuste 1), 3.022 (Fuste 2) y 0.73 (Fuste 3), y para el bosque de protección es de 31.39 (Fuste 1), 2.35 (Fuste 2) y 10.72 (Fuste 3) de acuerdo a los Cuadros 1, 2, 3 y a su función correspondiente.

La variación del volumen que se observa en la gráfica es debido al incremento de las clases diamétricas, para las tres condiciones de fuste.

CUADRO 1. Volumen comercial, aprovechable y recuperable total de árboles con Fuste 1, por hectárea y volumen estimado del BRUNAS. 1995.

Clase diamétrica	Volumen (m3	/Parcela Evaluada) ³	Volumen %		Volumen	Total
(cm)	Bosque Fores	tal* Bosque de Protección**	- Iotai		Aprove. ¹	Recuper. ²
10 - 39	95.779	51.229	147.008	49.451	110.256	95.555
40 - 69	90.258	35.456	125.714	42.288	94.286	81.714
70 - 99	17.072	7.489	24.561	8.262	18.421	15.965
> 100	0.00	0.00	0.00	0.00	0.00	0.00
and and the third third state date and the third state and	203.109	94.172	297.283	100.00	222.963	193.234
Tot	al		n 1990 Mille Mille Mill hard serie dans PART with mill serie dans dans dans	ه همين سنده ومين منت سند منت منت همن منت منت منت م		
BRU	JNAS 15,131.621	13,749.112	28,880.733		21,660.550	18772.476

^{*2} ha de área evaluada

^{**1} ha de área evaluada

 $^{^{1}}$ Va = Vc x 0.75, de árboles con fuste 1 en el BRUNAS

 $^{^{2}}$ Vr = Vc x 0.65, de árboles con fuste 1 en el BRUNAS

³Volumen Comercial (Vc)

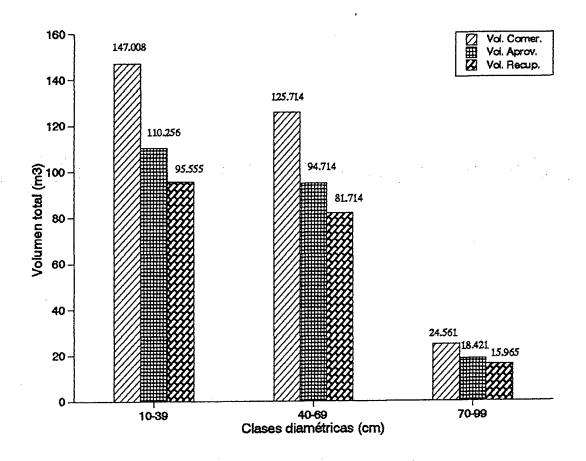


FIGURA 1. Volumen total (bosque forestal + bosque de protección) comercial, aprovechable y recuperable de árboles con fuste 1, según clases diamétricas del BRUNAS.

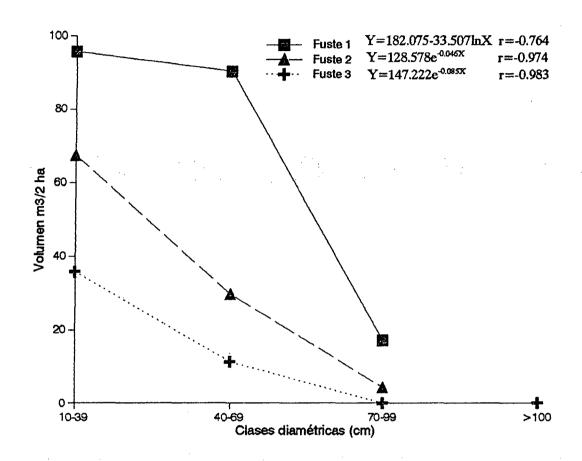


FIGURA 2. Variación del volumen en función a las clases diamétricas por clase fustal del bosque forestal de la UNAS, 1995.

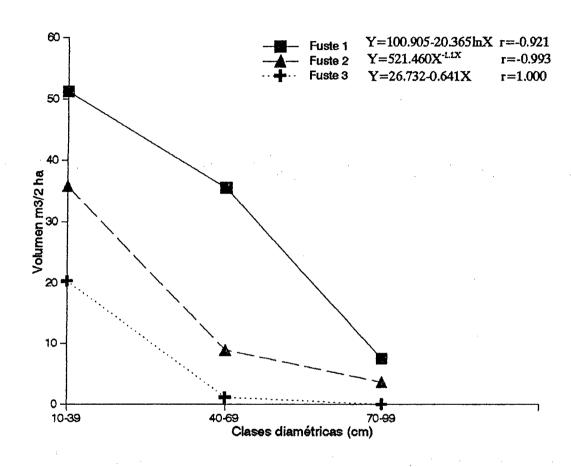


FIGURA 3. Variación del volumen en función a las clases diamétricas por clase fustal del bosque de protección de la UNAS, 1995.

B. ÁRBOLES CON FUSTE 2

En los resultados del Cuadro 2, de los volúmenes del bosque forestal y de bosque de protección en base a los valores máximos y mínimos considerados por cada clase diamétrica, se observa la variación del volumen por cada clase diamétrica, siendo mayor en árboles de clase diamétrica de 10-39 cm, seguido de 40-69 cm en ambos tipos de bosque.

El volumen total (volumen bosque forestal + protección) del BRUNAS, así como el volumen total aprovechable y recuperable mostrado en el Cuadro 2 y Figura 4, indica similar comportamiento de volumen en cada tipo de bosque, siendo mayor con el 68.91% de volumen en la clase diamétrica de 10-39 cm, 25.80% de 40-69 cm y 5.29% en 70-99 cm. En este tipo fustal no se observaron árboles mayores a 100 cm de clase diamétrica.

La variación del volumen mostrada gráficamente en la Figura 2 (Bosque forestal) y Figura 3 (Bosque protección), indica la disminución del volumen a medida que aumenta la clase diamétrica para el fuste 2.

CUADRO 2. Volumen comercial, aprovechable y recuperable total de árboles con Fuste 2, por hectárea y volumen estimado del BRUNAS, 1995.

Clase diamétrica	Volumen (m3/Parcela Evaluada) ³		Volumen Total	96	Volumen	Total	
(Cm)		osque Forest*	Bosque Protec.**	Iotai		Aprovec. 1	Recuper. ²
10 - 39		67.508	35.759	103.267	68.910	77.450	67.124
40 - 69		29.779	8.888	38.667	25.803	29.000	25.134
70° - 99		4.310	3.613	7.923	5.287	5.942	5.150
> 100		0.00	0.00	0.00	0.00	0.00	0.00
Ages della vern, lings anno illete dipit gres anno illete		101.597	48.259	149.857	100.00	112.392	97.408
~ '1	otal	. Min make reals and also first over this day, the self day first over t		o 440 ten eng 160 ano ano 450 144 166 ang 464 vu		الم المراد ا	ين <u> </u>
F	runas	15137.953	7045.814	22183.767		16637.825	14419.449

^{*2} ha de área evaluada

^{**1} ha de área evaluada

 $^{^{1}}$ Va = Vc x 0.75, de árboles con fuste 2 en el BRUNAS

 $^{^{2}}$ Vr = Vc x 0.65, de árboles con fuste 2 en el BRUNAS

³Volumen Comercial (Vc)

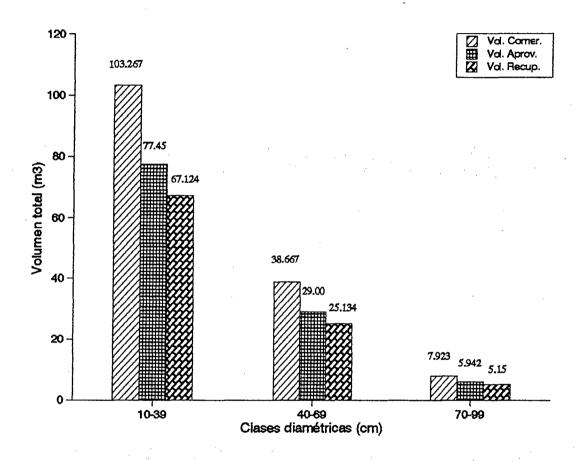


FIGURA 4. Volumen total (bosque forestal + bosque de protección) comercial, aprovechable y recuperable de árboles con fuste 2, según clases diamétricas del BRUNAS.

C. ARBOLES CON FUSTE 3

Los volúmenes obtenidos (Cuadro 3) del bosque forestal y del bosque de protección en base a los valores máximos y mínimos para cada clase diamétrica, podemos observar como varía el volumen por clase diamétrica, siendo mayor en árboles con clase diamétrica de 10-39 cm, seguido de 40-69 cm en ambos tipos de bosque.

El volumen total (volumen bosque forestal + protección) del BRUNAS, así como el volumen total aprovechable y recuperable mostrada en el Cuadro 3 y Figura 5, mantiene el mismo patrón de volumen para cada bosque, siendo mayor con el 81.98% de volumen en la clase diamétrica de 10-39 cm, 17.986% de 40-69 cm y 0.032% en mayor a 100 cm. No se observaron árboles con clase diamétrica entre 70-99 cm.

La variación del volumen mostrada gráficamente en la figura 2 (Bosque forestal) y figura 3 (Bosque protección), se indica como varía el volumen de acuerdo al incremento de las clases diamétricas, para el fuste 3.

CUADRO 3. Volumen comercial, aprovechable y recuperable total de árboles con Fuste 3, por hectárea y volumen estimado del BRUNAS. 1995.

Clase		Volumen (m3/Parcela Evaluada) ³		Volumen Total	g	Volumen	men Total	
(cm)		osque Forest*	Bosque Protec.**	Total	·	Aprovec. 1	Recuper. ²	
10 - 39		35.889	20.326	56.215	81.982	42.161	36.540	
40 - 69		11.224	1.109	12.333	17.986	9.250	8.016	
70 - 99		0.00	0.00	0.00	0.00	0.00	0.00	
> 100		0.022	0.00	0.022	0.032	0.017	0.014	
the sea and the sea of the sea and the sea and		47.135	21.435	68.570	100.00	51.428	44.570	
	Total	an and and and and and and and and and a					<i></i>	
	Brunas	3511.558	3129.510	6641.068		4980.801	4316.694	

^{*2} ha de área evaluada

^{**}ha de área evaluada

 $^{^{1}}$ Va = Vc x 0.75, de árboles con fuste 3 en el BRUNAS

 $^{^{2}}$ Vr = Vc x 0.65, de árboles con fuste 3 en el BRUNAS

³Volumen Comercial (Vc)

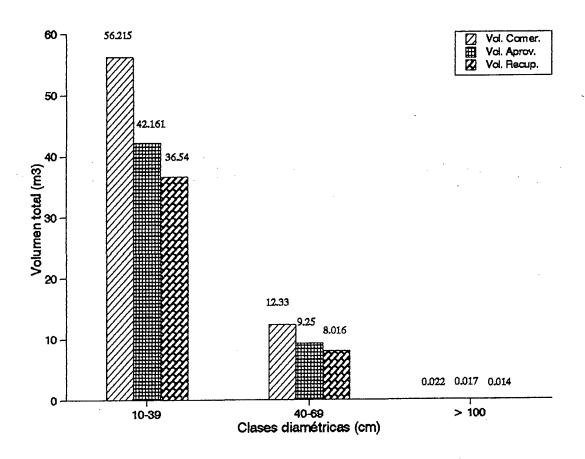


FIGURA 5. Volumen total (bosque forestal + bosque de protección) comercial, aprovechable y recuperable de árboles con fuste 3, según clases diamétricas del BRUNAS.

CUADRO 4. Análisis estadístico del Volumen Comercial de árboles totales según condición de fuste en el bosque forestal y de protección de la UNAS, 1995.

						=======
DAD AMERIDAG	BOSQUE FORESTAL BOSQUE DE				UE DE PROTE	CCION
PARAMETROS	FUSTE 1	FUSTE 2	FUSTE 3	FUSTE 1	FUSTE 2	FUSTE 3
	aran karan dalah arang baran musik hidem dalah bilah dalah kelali kelali					Per wire that mad also now may pay may
Promedio (X)	1.693	1.016	0.604	1.035	0.635	0.456
D. estandar (S)	2.303	1.135	0.540	1.038	0.787	0.649
E. estandar (S∑)	0.210	0.113	0.061	0.109	0.090	0.067
E. de muestreo (SX%)	12.404	11.112	10.099	10.531	14.216	14.693

2. NUMERO DE ARBOLES

a. Bosque Forestal

El número de árboles por fuste en las diferentes clases diamétricas del total de árboles inventariadas con DAP mayores a 10 cm y 3 m de altura comercial, presentado en el Cuadro 5. Observamos que el mayor número de árboles se encuentra en la clase diamétrica de 10-39 cm, con 440, 366 y 234 individuos (árboles) en la clase fustal 1, 2 y 3, respectivamente.

La representación gráfica de la figura 6a, muestra este comportamiento, indicando que el número de árboles con 10-39 cm de DAP superan en más del 89% del total de árboles inventariados por clase fustal.

Comparaciones entre clase fustal del número de árboles, indican que el 44% de individuos (árboles) se encuentran con fuste 1, con 34.34% con fuste 2 y 21.71% con fuste 3 (Figura 7a).

b. Bosque de protección

El número de árboles por fuste en las diferentes clases diamétricas del total de árboles inventariados con DAP mayores a 10 cm y 3 m de altura comercial, podemos observar en el Cuadro 5, donde los mayores números de árboles están en la clase diamétrica 10-39 cm, con 218,

189 y 127 individuos en la clase fustal 1, 2 y 3 respectivamente.

La representación gráfica de la figura 6b, muestra que el número de árboles con 10-39 cm de DAP, supera el 89% del total de árboles inventariados por clase fustal.

Comparaciones entre clase fustal del número de árboles, que se presenta en la Figura 7b, determina que el 42.8% de individuos inventariados tienen fuste 1, el 34.6% fuste 2 y 22.5% fuste 3.

3. COMPOSICION FLORISTICA

El resultado del inventario exploratorio, de la abundancia de las especies forestales, se presenta en el Cuadro 7 donde podemos observar que los bosques (Bosque forestal y protección) de la UNAS, concentra 32 familias, 70 géneros, 111 especies en total y 1693 individuos (1124 árboles de bosque forestal y 569 árboles de bosque de protección) (Cuadro 5).

De acuerdo a los Cuadros 8 y 9, se ha determinado que las cinco especies más abundantes en el bosque forestal son:

Senefeldera macrophylla (184 individuos),
Pseudolmedia laevis (47 individuos), Hevea guianensis

CUADRO 5. Número de arboles y porcentaje de distribución por condición de fuste y categorias diamétricas del bosque forestal y de protección de la UNAS. 1995.

Clases Diámetrica			SQUE I	FORE STAL*			BOS	QUE DE	PROTECC	ION **		
(cm)		FUSTE 1		JSTE 2	FU	STE 3	FU	STE 1	FUS'	TE 2	FUS	TE 3
	N° Arbol	& .es	N° Arbole:		N° Arbol		N° Arbole		N° Arboles	 % 	N° Arboles	8
10 - 39	440	89.069	366	94.820	234	95.90	218	89.34	189	95.94	127	99.22
40 - 69	51	10.324	19	4.922	9	3.69	24	9.84	7	3.55	1	0.78
70 - 99	3	0.607	1 -	0.259	0	0.00	2	0.82	1	0.51	0	
> 100	0				1	0.41	0		0		0	
eren uma ama sann agus dibb bine sine rena :	494		386		244		244		197		128	
	Total BRUNAS 3	36803		28757.0		18178	anno name anno anigo fineto disent mand	35624	2	8762	18	688
TOTAL ARB	OLES/ESTRA	ATO			1,124		- arm fam, arm, aver Trin film som		الله بالن سبن النال الله النال الله النال الله النال الله الله		 569	·

^{* : 2} ha de área evaluada

^{** : 1} ha de área evaluada

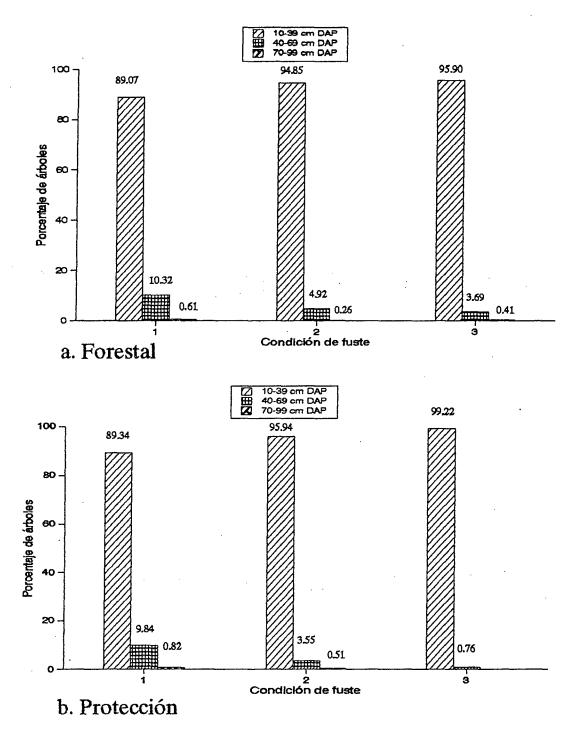
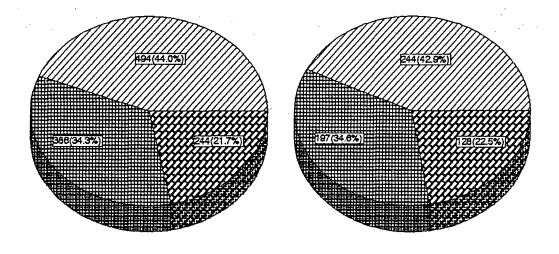



FIGURA 6.. Porcentaje de distribución del número de árboles según clase diamétrica por condición de fuste en el bosque forestal y de protección de la UNAS, 1995.

a. Bosque Forestal

b. Bosque de Protección

FIGURA 7. Número total de árboles por fuste en el bosque forestal y el bosque de protección de la UNAS.

CUADRO 6. Análisis estadístico del número de árboles totales según condición de fuste en el bosque forestal y de protección de la UNAS. 1995.

	BOSQUE FORESTAL			BOSQUE DE PROTECCION			
FUSTE 1	FUSTE 2	FUSTE 3	FUSTE 1	FUSTE 2	FUSTE 3		
4.117	3.860	3.128	2.681	2.592	2.702		
7.200	7.698	4.367	3.141	3.623	4.506		
0.657	0.770	0.494	0.329	0.416	0.657		
15.965	19.948	15.793	12.272	16.049	24.315		
	4.117 7.200 0.657	4.117 3.860 7.200 7.698 0.657 0.770	4.117 3.860 3.128 7.200 7.698 4.367 0.657 0.770 0.494	4.117 3.860 3.128 2.681 7.200 7.698 4.367 3.141 0.657 0.770 0.494 0.329	4.117 3.860 3.128 2.681 2.592 7.200 7.698 4.367 3.141 3.623 0.657 0.770 0.494 0.329 0.416		

(36 individuos), Pouroma minor (34 individuos), Cecropia engleriana (32 individuos), con volúmenes promedios de 0.711, 0.633, 0.107, 0.120 y 0.162 m respectivamente; con un coeficiente de mezcla de 0.096.

Mientras que en bosque de protección son:

Senefeldera macrophylla (64 individuos), Hevea guianensis (31 individuos), Byrsonima arthropoda (29 individuos), Pseudolmedia laevis (29 individuos) y Protium sp (23 individuos), con volúmenes promedios de 0.105, 0.089, 0.104, 0.862, y 0.099 m respectivamente; con un coeficiente de mezcla de 0.174.

CUADRO 7. Composición florística del Bosque Reservado de la UNAS - 1995.

FAMILIA	NOMBRER CIENTIFICO	NOMBRE COMUN	Nº DE Generos	TOTAL DE ESPECIES/ FAMILIA
1. ANNONACEAE	Guatteria guentheri‡ Rollina insignis Rc. fries	Carahuasca Anonilla	2	2
2. AHACARDIACEAE	Tapirira peckoltiana Tapirira guianensis aublet, hist. Spondias sp	Requia de altura ucshaquiro blanco 	2	3
3. APOCYNACEAE	Aspidosperea narcgravianum ‡ Himatanthus sucuuba(spruce)#oods	Remocaspi amaril. Flatano de monte	2	2
4. ARALIACEAE	Pendropanax tessmannii hanms Didymopanax morototoni(abul) Decne at- Planch	Aceite caspi	2	2
5. BIGHONIACEAE	Jacaranda copaia(Aubl)D.Don	Huamansamana	1	1
6. BURSERACEAE	Protium sp1 Protium sp2 Protium sp3	Copal Copalillo 	i	3
7. BOCHYSIACEAE	Qualea implexa macbr	Shamoja negra	1	1
8. BORAGINACEAE	Cordia ucayaliensis Johnston	Añallo caspi	i	1
9. CARICACEAE	Jacaratia digitata(poepp end soldin mart)	Papaya de monte	i	í
10.CECROPIACEAE	Cousapoa ovalifolia Cousapoa sp Pouroma minor benoist Pouroma cecropiaefolia mart.ex.miq Cecropia latiloba miq. in mart Cecropia engleriana snethlage Cecropia francisci snethlage Cecropia membranacea trecul Cecropia sciadophylla mart Cecropia ficifolia snethlage	Ubilla Ubilla Ubilla Ubilla Llausa cetico Loro cetico Cetico rojo Cetico blanco Cetico blanco Cetico blanco	3	10
11.ELAEOCARPACEAE	Sloanea sp		1	1
12.EUPHORBIACEAE	Hevea guianensis Hevea guianensis var. lutea Senefeldera macrophylla Mabea piriri Aublet	Shiringa de cerro Shiringa amarilla Huangana caspi Shiringuilla	. 3	ď.
13.FLACORTIACEAE	Casearia sylvestris swartz Laetia procera (P y E) Eichler	Loro ñahui Purma caspi	2	2

14.FABACEAE	Acacia sp.	Pashaco		
	Boccoa sp.			
	Cedrelinga catenaeforais Duke	Tornillo rojo		
	Dalbergia variabilis ‡			
	Macrosamanea pedicellaris (Dc)Kle	Vilca pashco rojo	1	}
	Macrolobium acaciafolium Benth	Pashco		
	Sclerolobium setiferum Duke	Ucshaquiro negro		
	Senna sylvestris ‡			
	Ormosia sp	Huayruro		
	Piptademia sp		1	
	Enterolobium cyclocarpun(jacg)Griseb	Pashoco blanco	1	
	Parkia spi	Pashoco negro		
	Parkia sp2	Yurac caspi		23
	Inga Thiboudiana DC			ĺ
	Inga Capitata desv		12	
	Inga alba(swartz) Willdenow	Shimbillo		
	Inga lallensis \$			
	Inga edulis mart	Guaba		
	Inqa marginata Willd	Shimbillo colorad		
	Inga spi			
	Inga sp2			
	Inga spā		•	
	Inga sp4			
15.GLUSIACEAE	Calophyllum brasiliense Camb	Lagarto caspi		
	Marila laxiflora rusby	Duina quina		
	Symphonia globulifera L.	Palo azufre	4	5
	Vismia cayenensis(Jack)Pers.	Achiotillo		
	Viseia rusby ‡	Achiotillo		
16.HIPPOCASTANAE	Billia sp	Piño peruano	1	1
17.ICACINACEAE	Pendrobangia sp.		1	1
17.16HGINNGERC	senationandra ph.			1
18.LAURACEAE	Persea sp.	Palia moena		
	Rectandra turbacensis	Moena negra.		8
	Hectandra cuspidata ‡	ñoena	3	
	Hectandra sp	Moena amarilla		7
	Ocotea glomerata 🛊	ñoena		
	Ocotea amazonica(Heissmer)Hez.	ñoena		
	Ocotea sp	Hoena	j	
	Licaria canella(Heiss)Kost	Moena		
19.LECYTHIDACEAE	Eschwilera ovalifolia(D.C)Miedenz	Kachieango	1	1

20.MELASTOMATACEAE	Henrietella Sylvestris Gleason Hiconia amazónica Triana Hiconia aulocalyx Hart Hiconia bailloniana macbride vell Hiconia longifolia(Aubl)DC. Hiconia holosericea (L)DC. Hiconia theaezans \$ Hiconia sp1 Hiconia sp2 Hiconia sp3	Hispero blanco Manzanita o nispe Paloperro Cucaracha caspi	2	16
21.MELIACEAE	Guarea trichilioides l. Cabralea canjerana ‡	1		2
22.MALPIGHIACEAE	Byrsonima Arthropoda a. Juss	Sacha caimito	1	i
23.MYRISTICACEAE	Virola pavonis (ADC)AC.Smith Iryanthera tricornis Duke	Cumala roja Cumala blanca	2	2
24.HYRSINACEAE	Stylogyne aff. cauliflora		i	1
25.MYRTACEAE	Calyptranthes sp		1	1
26.HORACEAE	Annonocarpus amazonicus Ducke Clarisia racemosa R y P Brosium Iaciescens Brosiuum sp Perebea sp Pseudolmedia laevis(Ruiz-Pavon)JF Ficus Killipii (Arg) Arg. Ficus aff. paraensis miq Ficus mathemsii (Arg) Arg. Ficus sp1 Ficus sp2	Mashonaste Hashonaste manchinga Chimicua Chimicua Mata palo Renaco	7	11
27.RUBIACEAE	Rathysa sp Capirona decorticans spruce Psychotria pichisensis standley	Capirona Capirona negra	3	3
28.SAPOTACEAE	Micropholis gayanensis(A.Dc)Pierr Pouteria procera (Mart)Penn	Coca caspi Buina quina	2	2
29.STERCULIACEAE	Theobroma obovatum \$ Sterculea apetala(jacq)karst	Cacao de monte Huayra caspi	2	2
30.TILIACEAE	Apeiba membranacea Spruce Apeiba aspera \$	Palo corcho Haquisapa-Ñaccha	1	2
31.URTICACEAE	Myriocarpa stipitata Benth	Ishango blanca	1	1
32.VERBENACEAE	Vitez sp	Chamisa	i	i
FAMILIA: 32		TOTAL	70	111

^{1.-} Las lineas punteadas (-----), indican que no se reporta el nombre común. 2.- Se utilizó como coeficiente de forma 8.7 HOTA.

CUADRO 8. Orden de importancia de las especies en función a la abundancia y por categorías diamétricas del bosque forestal.

ESPECIE CATEGORIA 10 - 39 cm DAP	Nro. DE INDIVIDUOS	DAP Co T	ALTURA Ħ ▽	NOT NHEH
Confidence recordedly	181	15.98	6.51	6.096
Senefeldera macrophylla Pseudolmedia laevis	46	18.98	7.92	8.157
rsegooimeota taevis Hevea quianensis	36	16.14	7.47	9.187
nevea yatanensis Pouroma minor	32	17.26	7.34	B.119
couroma minor Cecropia engleriana	25	17.62	9.58	9.162
Cecropia engleriana Cecropia francisci	24	18.63	9.95	8.198
Protium spi	23	15.29	7.33	6.994
Capirona decorticans	19	20.25	8.14	0.184
Laetia procera	19	17.45	8.22	0.138
Sclerolobium setiferum	19	23.67	11.17	8.344
Jacaranda copaia	18	22.87	18.47	8.286
Hevea quianensis var. lutea	16	19.13	18.99	6.201
nevea quienensis van. laica Clarisia racemosa	16	17.44	7.65	0.128
Byrsoniea arthropoda	16	14.43	5.75	8.866
Annonocarpus amazonicus	16	20.00	7.59	9.165
Cecropia latiloba	15	14.72	9.87	9.118
Casearia sylvestris	15	16.87	7.33	9,115
Qualea impleza	15	19.90	16.67	8.232
Cedrelinga catenaeformis	15	19.17	7.48	9.151
Guatteria quentheri	15	22.69	10.45	8.293
Macrosamanea pedicellaris	15	28.58	8.82	0.204
Perebea sp	14	17.57	8.87	9.137
Ocotea glomerata	14	19.32	8.79	8.188
Apeiba aspera	13	11.18	8.94	8.861
Protium sp2	13	19.79	8.75	9.188
Senna sylvestris	12	14.17	5.33	8.659
Theobroma obovatum	11	13.99	6.94.	9.965
Iryanthera tricornis	. 11	18.43	9.44	8.176
Micropholis guyanensis	11	23.14	10.64	0.313
Didymopanaz morototoni	11	24.63	12.46	0.416
Hectandra cuspidata	18	19.13	8.94	0.162
Virola pavonis	10	29.10	9.39	8.209
Inga marginata	19	28.72	7.95	8.188
Inga thibaudiana	9	15.33	7.83	0.181
Tapirira guianensis	9	28.41	8.57	8.196
Psychotria pichisensis	8	26.97	18.29	6.411
Viseia rusby	8	11.64	4.24	9.932
Symphonia globulifera	8	16.90	9.88	0.154
Boccoa sp	7	21.58	7.58	8.191
Inga sp4	7	28.68	5.85	0.129
Apeiba membranacea	7	15.34	6.00	8.978
Eschweilera ovalifolia	7	28.13	8.75	8.195
Hiconia aulocalyr	7	19.17	8.38	8.169
Calyptranihes sp	7	19.50	9.10	0.198

Inga capitata	6	25.58	19.18	0.361
Marila laxiflora	ь	21.98	9.28	0.243
Dendropanax tessmannii	6	14.63	7.13	9.884
Pendrobangia sp	6	17.88	7.88	0.139
Nectandra turbacensis	6	25.75	7.75	9.283
Macrolobium acaciafolium	6	21.17	9.17	8.226
Miconia holosericea	6	13.42	5.84	9.858
Spondias sp	6	22.67	7.17	0.203
Stylogne aff. cauliflora	6	20.17	6.84	0.153
Pouteria procera	6	25.75	12.88	9.437
Inga lallensis	6	21.89	10.86	8.282
Miconia Theaezans	6	23.67	9.56	8.293
Miconia amazonica	6	12.67	6.67	8.859
Cecropia sciadophylla	5	22.13	11.75	6.316
Cabralea canjerona	5	21.69	7.13	8.184
Enterolobium cyclocarpum	5	20.14	7.18	8.158
Protium sp3	5	18.58	7.25	8.136
Cordia ucayaliense	5	16.67	8.66	8.122
Ocotea sp	5	23.92	8.89	8.254
Vitex sp	5	25.75	9.17	8.334
Inga alba	5	14.58	6.34	9.073
Licaria canella	5	15.59	7.42	0.979
Piptadesia sp	5	19.25	8.59	9.173
Parkia sp2	5	12.84	6.89	9.655
Rollina insignis	5	20.84	10.67	0.255
Hectandra sp	5	28.25	8.25	9.186
habea piriri	4	14.67	5.34	9.963
Miconia bailloniana	4	13.56	7.00	0.070
Pouroma cecropiaefolia	4	19.88	8.67	8.172
Ficus aff. paraensis	3	18.50	7.89	9.132
Hiconia sp3	3	12.89	6.33	8.050
Acacia sp	3	20.00	6.25	8.137
Guarea trichioloides	3	19.25	6.75	8.138
Henrrietella sylvestris	3	17.13	6.92	8.897
Sterculea apetala	3	23.75	9.58	8.295
Inga spi	2	19.56	7.25	9.152
Brosimun sp	3	29.33	10.33	9.489
Miconia sp2	3	16.98	7.25	9.182
Tapirìra peckoltiana	3	28.58	7.25	9.168
Aspidosperma marcgravianum	2	27.68	13.59	6.541
Palbergia variabilis	2	24.50	9.00	8.297
Ficus mathemsii	2	19.50	5.98	8.105
Miconia longifolia	2	35.58	13.50	0.935
Cousapoa sp	2	28.58	8.58	0.196
Ocotea amazonica	2 2	14.58	8.69	0.072
Persea sp	2 2	16.69	11.00	0.155
Billia sp		15.58	6.58	0.086
Cecropia membranacea	2	30.58	9.00	9.469
Ficus sp2	2	26.68	9.58	8.289
Riconia spl	2	23.50	5.09	0.152
Inga sp3	2	16.58	6.58	9.897
Bathysa sp	1	21.89	12.00	8.291
Cousapoa ovalifolia	1	16.68	8.66	8.113
anankan asattiatin				L

		T	r	·	·
Ormosia sp		1	16.99	4.08	9.856
Parkia spl		1	20.06	8.00	9.176
Sloanea sp		i	38.00	13.00	8.643
Viseia cayennensis		1	10.59	4.88	0.021
Ficus Killipii		i	14.69	7.60	9.675
Myriocarpa stipitata		1	28.00	9.88	9.388
Inga edulis		1	14.00	6.89	9.865
·					
	48 - 69 cm DAP				·
Cedrelinga catenaeformis		9	58.63	13.86	2.457
Macrosamanea pedicellaris		ş	59.58	14.75	2.871
Jacaranda copaia		5	49.17	13.59	1.866
Tapirira quianensis		4	53.69	16.58	2.557
Viter sp		4	44.50	8.25	9.898
Viter Sp Nectandra cuspidata		4	47.17	10.33	1.264
Hevea quianensis var. lutea		3	42.75	13.25	1.331
nevea quianensis var. iutea Laetia procera	•	3	49.86	10.56	1.386
· ·		3	40.13	14.75	1.396
Ocotea glomerata Senefeldera macrophylla		3	47.50	18.75	1.333
Buarea trichioloides		2	62.58	13.66	2.792
Enterolobium cyclocarpun		2	45.98	8.89	8.891
		2	53.58	12.69	1.888
Virola pavonis Dalberoia variabilis		2	53.59	11.58	1.818
Guatteria quentheri		2	43.88	11.50	1.169
Pourcea minor		2	43.98	13.58	1.72
Apeiba aspera		1	45.66	12.09	1.336
Apeiba membranacea		i	45.66	19.00	1.113
Roccoa sp		1	42.88	15.60	1.455
Eschweilera ovalifolia		1	58.68	14.98	1.929
Ficus killipii		1	55.09	11.69	1.829
Inga lallensis		1	53.98	14.68	2.162
inga spå		i	45.66	12.00	1.336
Licaria canella		1	41.00	8.99	0.739
Micropholis quyanensis		1	51.99	12.00	1.716
Hectandra turbacensis		1	64.00	12.96	2.782
Hectanora sp	•	1	42.00	13.99	1.261
Protium sp2		í	47.98	9.06	1.893
Sterculea apetala		i	48.99	8.69	0.784
Brosium lactescens		1	59.80	12.68	2.297
Brosiaua sp		1	44.66	15.66	1.597
Cecropia francisci		1	41.88	10.00	8.924
Calophyllum brasiliense		i	47.69	9.68	1.093
Pendropanas tesseannii		1	52.00	17.06	2.527
Ficus mathemesii		1	43.60	14.00	1.423
Inga alba		1	49.88	12.08	1.584
Inga spi		i	45.88	13.00	1,447
Harila laxiflora		i	63.00	12.00	2.618
Pseudoloedia laevis		1	41.00	12.86	1.169
Qualea implera	•	1	45.88	11.00	1.225
		1	L		

76 - 99 cm DAP				
Cedrelinga catenaeformis	2	88.50	14.58	6.244
Brosiaun sp	1	78.88	16.88	4.316
Ormosia sp	i	78.60	13.69	4.348
> 188 ca DAP				
Boccoa sp	1	199.69	4.68	9.922

NOTA. 1.- Las lineas punteadas (-----), indican que no se reporta el nombre común.

2.- Se utilizó como coeficiente de forma 8.7

CUADRO 9. Orden de importancia de las especies en función a la abundancia por categorias diamétricas del bosque de protección UNAS - 1995.

CATEGORIA 10 - 39 cm de DAP						
ESPECIE	Hro. DE INDIVIDUOS	DAP, cm	ALTURA, ∉ ⊠	KSHUJOV Em		
Senefeldera macrophylla	64	16.29	7.17	9.185		
Hevea quianensis	31	15.18	7.85	0.089		
Byrsonima arthropoda	29	17.79	6.89	8.164		
Pseudoleedia laevis	27	22.44	18.89	0.301		
Protium sp1	23	15.22	7.78	9.899		
Virola pavonis	17	21.18	9.59	0.237		
Clarisia racemosa	16	19.86	8.63	/ 8.187		
Ocotea glomerata	13	17.62	8.39	8.143		
Tapirira quianensis	13	23.00	8.69	8.253		
Theobroes obovatum	12	18.17	7.17	8.138		
Pouteria procera	11	19.69	9.18	8.184		
Hevea quianensis var. lutea	19	17.09	9.18	6.166		
Symphonia globulifera	19	23.10	11.59	9.337		
Inga marginata	19	15.33	6.33	0.082		
Piptademia sp	9	19.66	8.78	8.174		
Guatteria quentheri	8	26.88	11.88	0.472		
Pauroma minor	8	17.13	7.25	8.117		
Dendropanar tesseannii	7	17.00	7.57	8.128		
Perebea sp	7	16.71	8.86	0.136		
Acacia sp	6	19.68	7.83	8.155		
Dendrobangia sp	6	14.50	8.88	9.892		
Ficus killipii	6	19.67	8.59	0.181		
Macrosamanea pedicellaris	6	20.17	8.67	8.194		
Hectandra sp	6	18.17	10.67	8.194		
Sloanea sp	6	15.88	8.33	9.183		
ybeipa mempuanacea	5	13.80	5.48	0.057		
Aperoa meeoranacea Calyptranthes sp	5	15.48	8.40	6.116		
caryptrantnes sp Casearia sylvestris	5	14.98	5.60	0.960		
tasearia sylvestris Tapirira peckoltiana	5	19.40	7.86	8,145		
	5	14.25	9.25	8.183		
Apeiba aspera	4	18.75	18.25	8.198		
Boccoa sp	1	17.25	9.50	6.155		
Cecropia francisci	4	21.58	12.09	0.3305		
Cecropia latiloba	4	22.58	18.75	8.299		
Cecropia engleriana	4	19.25	9.25	9.188		
Cousapoa ovalifolia	4	17.60	7.88	8.111		
Dalbergia variabilis	4	16.25	8.88	6.116		
Inga sp2	4	14.59	7.58	8.087		
Inga sp4	4	18.25	8.75	6.169		
Jacaranda copaia	4	22.75	19.25	9.292		
Licaria canella	4	22.00	9.25	8.27£		
Laetia procera	4	14.25	8.68	6.689		
Macrolobium acaciaefolium	· ·	19.89	7.75	9.154		
Hectandra cuspidata	4	•	18.00	8.242		
Cordia ucayaliense	3	21.68	15.55	5.242		

Bathysa sp	3	24.88	7.67	8.243
Cecropia sciadophylla	3	25.33	11.67	0.412
Cedrelinga catenaeformis	3	25.33	11.67	9.412
Henrietella sylvestris	1 3	16.67	7.88	9.187
Inga sp3	3	26.33	9.67	0.369
Iryanthera tricornis	3	14.67	7.33	8.687
Jacaratia digitata	3	27.33	9.33	6.383
Micropholis guyanensis	3	19.68	7.67	8.152
	3	28.33	11.98	6.485
Pourosa cecropiaetolia	2	11.67	6.66	6.845
Parkia spi	3	17.33	9.66	8.149
Parkia sp2	3	19.88	8.88	8.159
Qualea impleza	2	15.00	6.50	8.689
Billia sp	2	13.86	7.88	8.865
Cousapoa sp	2	17.59	14.00	6.236
Didynopanax morototoni	2	22.56	13.66	8.362
Eschweilera ovalifolia	2	12.68	7.88	6.055
ficus spi	2	11.60	8.56	6.857
Ficus sp2		1	5.98	0.862
Inga alba	· 2	15.88	ł .	8.098
Inga spi	2	14.58	8.56	l.
Marila laxiflora	2	24.58	12.88	8.396
Miconia holosericea	2	21.58	9.88	8.229
Miconia bailloniana	2	19.58	9.86	8.188
Miconia spl	2	15.89	7.66	0.887
Hectandra turbacensis	2	18.69	8.58	0.151
Sclerolobium setiferum	2	25.99	7.50	0.258
Ocotea amazonica	2	13.56	7.59	8.875
Ormosia sp	2	20.00	19.56	0.231
Myriocarpa stipitata	2	14.86	6.58	9.070
Persea sp	2	27.56	9.56	0.395
Protium sp2	2	22.88	8.59	9.226
Brosiqua so	1	34.69	12.00	9.763
Cecropia ficifolia	1	17.88	10.88	9.159
Capirona decorticans	1	18.96	7.00	0.125
Ficus aff. paraensis	1	11.66	8.66	8.653
Guarea trichioloides	1	24.00	6.00	0.198
Inga capitata	1	19.88	6.88	0.119
Mabea piriri	1	17.99	3.88	9.948
Miconia theaezans	i	19.89	5.06	0.027
Miconia longifolia	1	35.68	14.90	9.943
Miconia aulocalyx	1	24.00	12.00	6.386
Hiconia sp2	1	17.00	9.88	0.143
Miconia sp3	1	14.68	13.00	8.148
Rollina insignis	1	39.00	14.00	0.693
Senna sylvestris	1	26.08	13.08	0.483
Sterculea apetala	1	17.06	13.66	9.207
Spondias sp	1	36.88	11.68	8.784
Ocotea sp	1	13.66	9.88	8.884
Psychotria pichisensis	1	29.00	8.88	9.376
Enterolobium cyclocarpum	1 1	18.99	18.88	0.178
Protium 593	1	21.00	8.66	8.194
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		1	1	l .

4	8 - 69 cm de DAP			
Viter sp	4	43.25	8.59	8.874
Clarisia racemosa	2	45.89	18.88	1.113
Guatteria quentheri	2	42.00	13.58	1.389
Hevea guianensis var. lutea		47.59	14.58	1.799
Macrosomanea pedicellaris	2 2 2 2 2 2	42.58	18.58	1.843
Nectandra turvacensis	2	56.59	9.88	1.580
Sloanea sp	2	55.99	9.58	1.588
Spondias sp	2	53.00	9.99	1.398
Pseudolmedia leavis	2	45.58	12.58	1.423
Enterolobium cyclocarpun	2	44.58	9.59	1.834
Cecropia latiloba	1	41.99	12.68	1.189
Cecropia membranacea	1	44.80	14.98	1.498
Calyptranthes sp	1	43.00	14.88	1.423
Dalbergia variabilis	1	58.80	14.88	1.924
Dendrobangia sp	1	54.98	14.88	2.244
Inga alba	1	48.68	12.00	1.956
Hectandra cuspidata	. 1	59.00	12.00	2.297
Ocotea glomerata	1	43.90	11.88	1.118
Protium sp2	1	65.88	14.89	3.252
Tapirira guianensis	1	41.90	19.99	8.924
70 - 99 cm	de DAP			
Acacia sp	1	72.89	9.88	2.565
Brosium lactescens	1	83.88	13.68	4.924
Ocotea sp	i	74.88	12.88	3.613

V. DISCUSION

 VOLUMEN MADERABLE (Comercial, aprovechable y recuperable) DEL BOSQUE FORESTAL Y DE PROTECCION DE LA UNAS.

Los resultados al aplicar la fórmula de cálculo del volumen comercial (2), a los valores máximos y mínimos por cada clase diamétrica agrupada en el inventario explotatorio del BRUNAS. han sido clasificadas en base a la condición de fuste por árbol. Los resultados obtenidos que en general tienen el mismo patrón, donde el volumen total por fuste varía según la clase diametral, indicándonos que es mayor en árboles con 10-39 cm de DAP. Así los resultados del Cuadro 1 y Figura 1, de árboles con fuste 1, se obtenieron 95.779 m/2ha en el bosque forestal y 51.229 m³/ha en el bosque de protección en árboles con 10-39 cm de DAP, seguidos en unos 50% menor en volumen maderable para árboles de 40-69 cm de DAP.

En el Cuadro 2 y Figura 4, de árboles con fuste 2, también se obtuvieron los mayores volúmenes de 67.508 m³/2ha (Bosque forestal) y 35.76 m³/ha (Bosque de protección) en árboles con 10-39 cm de DAP, seguidos en unos 30% y 56%, respectivamente, menor en volumen maderable para árboles de 40-69 cm de DAP y los resultados del cuadro 3 y figura 5, muestra mayores volúmenes de 35.889 m³/2ha (Bosque forestal) y

20.326 m/ha (Bosque de protección) en árboles con 10-39 cm de DAP, seguidos en unos 52% y 89% menor en volumen maderable para árboles de 40-69 cm de DAP respectivamente.

Los resultados en volumen encontrado en ambos tipos de bosque por condición de fuste, son similares a lo encontrado por Montenegro (22), donde los mayores volúmenes maderables inventariado son determinadas por árboles menores a 20 cm de DAP. Además estos resultados son atribuibles al mayor número de árboles encontrados (Cuadro 5) dentro de esta clase diamétrica y por clase fustal.

Otra aseveración podría ser la tendencia en cuanto a la distribución de volúmenes por clase diamétrica inventariados, donde los árboles con diámetros mayores si bien aportan con mayor volumen por árbol, a nivel del conjunto de árboles aportan con menos volumen (17).

La variación del volumen en base a las categorías diamétricas en estudio, son altas de acuerdo a una distribución correspondiente a una correlación logarítmica inversamente proporcional con r=-0.764 para el bosque forestal y r=-0.921 para el bosque de protección en árboles de fuste 1 (Figura 2 y 3).

En árboles con fuste 2, se ha observado una una distribución correspondiente correlación а exponencial inversamente proporcional con r=-0.974 para el bosque forestal (Figura 2) y una correlación de potencia inversamente proporcional con r=-0.993 para el bosque de protección (Figura 3). Similar relación proporcional al inversamente incremento diametral se observa para árboles con fuste 3, con r=-0.983 en el bosque forestal (Figura 2) y r=-1.00 en el bosque de protección (Figura 3).

estos resultados de la Todos relación dependiente del volumen en la clase diamétrica nos indica que a mayor diámetro 40 cm de DAP, menor es el volumen por unidad de área, lo que puede inferirse que la mayor variación del volumen se presenta en las clases diamétricas altas, debido a que un incremento relativo de la clase diamétrica, el volumen aproximadamente reducido a la mitad del incremento, como indica en el fuste 2 del bosque forestal. afirmación es corroborada por Malleux (17), que manifiesta que el bosque natural es poco eficiente en la producción de volúmenes de madera, ya que la gran competencia por la sobrevivencia determina una fuerte eliminación de árboles dejando un número escaso de productores de volumen aprovechable; sin embargo para esto han debido pasar muchos años.

En cuanto al volumen total del bosque forestal

más bosque de protección, el volumen aprovechable y recuperable (Cuadro 1 y Figura 1), mantienen los mismos rangos en volumen maderable para la clase diamétrica 10-39 cm y los volúmenes totales por bosque forestal 203.109 m3/2ha y de 94.172 m3/ha en el bosque de protección para el fuste 1, 101.597 m3/2ha (Bosque forestal) y 48.259 m3/ha (Bosque de protección) en árboles con fuste 2 y 47.135 m3/2ha (Bosque forestal) y 21.435 m3/ha (Bosque de protección) en árboles con fuste 3, guardan similitud comparadas con resultados obtenidos en el inventario de Río Tambo-Gran Pajonal (16) y SAIS Pampa-Pucallpa (17).

En el Cuadro 4, que muestra los resultados del análisis estadístico del muestreo de árboles de clases diamétricas por fuste en el bosque forestal, se puede ver que en un tamaño de muestra de 2 ha hay un error de muestreo de 10.099% (fuste 3), seguido de 11.112% (fuste 2) y 12.404% (fuste 1), respectivamente.

Similares rangos se observan en el bosque de protección que tienen errores de muestreo que van de 10.531% (fuste 1), 14.216% (fuste 2) y 14.693% (fuste 3), respectivamente.

2. NUMERO DE ÁRBOLES

El mayor número de individuos encontrados en el bosque forestal corresponde a la clase diamétrica 10-

39 cm de DAP, con 440 árboles en el fuste 1, 366 árboles en el fuste 2 y 234 árboles en el fuste 3 (Cuadro 5). En este mismo cuadro apreciamos que también hay mayor número de árboles en el fuste 1 (218 árboles), fuste 2 (189 árboles) y fuste 3 (127 árboles). En el bosque de protección, Resultados que obedecen a la heterogeneidad del bosque a cuyo alto número de individuos le corresponde clases diamétricas pequeñas y un bajo número de individuos con clases diamétricas altas (13).

Este comportamiento de mayor número de árboles en los bosques forestales y de protección (Figura 6), nos muestra que más del 89% del total de árboles inventariados por clase fustal están dentro de los 10-39 cm de DAP, datos que corroboran a las consideraciones antes mencionadas; bajo el comportamiento de un bosque natural. Los resultados son similares a los obtenidos en otros inventarios (10, 21), en forma asimétrica o J invertida, siendo menor el número de árboles a mayor DAP (22).

Comparaciones entre fuste, al que podemos remarcar la debida importancia, por considerarse como la parte comercial en la explotación maderera, nos reporta que el 43.95% del total de árboles en el bosque forestal tiene fuste 1 (Figura 7a) y con el 42.88% en el bosque de protección (Figura 7b). Estos resultados nos indican que más del 42% están

presentando buena conformación del tronco.

De los análisis estadísticos (Cuadro 6), para esta variable, nos indica que el inventario posee un error de muestreo de 15.965%, 19.948% y 15.793% respectivamente en el bosque forestal y un error de muestreo de 12.272%, 16.049% y 24.315% respectivamente para el bosque de protección; resultados que son atribuibles a la heterogeneidad del número de árboles por especies inventariado.

3. COMPOSICION FLORISTICA

Los resultados del número de árboles totales en el Bosque Reservado de la UNAS (BRUNAS), se presenta en el Cuadro 7, cuya clasificación \por familia y nombre científico han sido obtenida por la información de los materos, previa verificación con la literatura disponible (4, 7, 25, 28), la determinación posterior por especies y familias fueron reconocidos taxónomicamente en el laboratorio de dendrología de la Universidad Nacional Agraria La Molina.

Es necesario remarcar que la mayoria de las especies encontradas son comunes en ambos bosques (forestal y protección), probablemente por la dispersión natural del material propagativo bajo las condiciones edáficas similares, donde la flora es proporcionalmente compleja y heterogénea (17),

encontrándose 32, familias 70 géneros, 111 especies y un total de 1,693 árboles. El mayor número de individuos encontrados en el bosque forestal de 1,124 árboles comparadas a 569 árboles en el bosque de protección (Cuadro 5), obedece a su característica de bosque secundario, puesto que la extracción de árboles en el bosque forestal ha permitido la probable población en mayor número de individuos.

Las especies de mayor abundancia tanto en el bosque forestal como en el bosque de protección es la Senefeldera macrophylla con 184 individuos y un volumen promedio de 0.712 m3 en el bosque forestal (Cuadro 8), y 64 individuos con un volumen promedio de 0.105 m3 en el bosque de protección (Cuadro 9).

Sin embargo el orden de importancia tanto en número de individuos como en volumen promedio varían sustancialmente, el cual podría inferirse a las posibles limitaciones o características del suelo (16), cuya selección natural de las especies, han sido favorecidas con una mayor abundancia, encontradas en el muestreo.

VI. CONCLUSIONES

En base a los resultados y discusión se concluye en los siguientes:

- 1. EL potencial maderable del BRUNAS, cuenta con un volumen comercial de 203.109 m3/2ha en el bosque forestal y 94.172 m3/ha en el bosque de protección con fuste 1, 101.597 m3/2ha (bosque forestal) y 48.259 m3/ha (bosque de protección) con fuste 2 y con 47.135 m3/2ha (bosque forestal) y 21.435 m3/ha (bosque protección) con fuste 3, con promedios en volumen de 19.975, 64.345, 14.109 y 0.022 para las categorias diamétricas 10-39, 40-69, 70-99 y > 100 cm de DAP respectivamente para el bosque forestal y 19.873, 29.982 y 11.102 para el bosque de protección.
- 2. La distribución del volumen es asimétrica en cada clasificación fustal, siendo la clase diamétrica 10-39 cm los que más aportan al total del volumen de los bosques forestales + protección con el 49.451% en el fuste 1, 68.910% en el fuste 2 y el 81.982% en el fuste 3.

- 3. La composición florística es heterogénea, con un total de 32 familias, 70 géneros, 111 especies, 1,124 árboles en el bosque forestal y 569 árboles en el bosque de protección, y las cinco especies más abundantes en el bosque forestal son: Sefefeldera macrophyla Pseudolmedia laevis, Hevea guianensis, Pouroma minor, Cecropia engleriana con 184, 47, 36, 34 y 24 individuos respectivamente. Mientras que en el bosque de protección son: Senefeldera macrophylla, Byrsonima arthropoda, Pseudomedia laevis, Protium spl y Hevea guianensis con 64, 31, 29, 29 y 23 individuos respectivamente.
- 4. El volumen comercial total maderable estimada de 57,705.568 m (Fuste 1+2+3) de BRUNAS, así como el volumen total aprovechable y recuperable, tiene posibilidades para desarrollar un plan de manejo.
- 5. En general, para los tipos de fuste por bosque, el inventario exploratorio reporta errores de muestreo mayor de 10%

VII. RECOMENDACIONES

De los resultados y conclusiones del estudio se recomienda:

- 1. Realizar inventarios similares y otros de nivel más detallados, en la zona en estudio, con la finalidad de obtener información más específica en cuanto a su composición florística y contenido volumétrico, y poder establecer el cálculo de las posibilidades reales de aprovechamiento forestal-industrial, bajo una adecuada política de manejo integral y uso de los recursos disponibles.
- 2. Para las condiciones similares de bosque en estudio, realizar clasificación de tierras para darle un mejor uso de los recursos naturales y crear centros de investigación para realizar estudios que establescan tecnologías de manejo integral, que permitan generar alternativas tecnológicas viables, acorde a la situación agroecológica de la zona.
- 3. A la UNAS, asumir la responsabilidad de un permanente control sobre el uso de los recursos forestales y promover y ejecutar programas de información y capacitación al personal y los agricultores de la zona, sobre los riesgos del uso indiscriminado de los bosques.
- 4. Mantener la vegetación actual del BRUNAS, como reserva forestal y de protección.

VIII. RESUMEN

El presente inventario exploratorio se realizó en el bosque reservado de la Universidad Nacional Agraria de la Selva (BRUNAS) entre los meses de enero a diciembre 1993; en una extensión de 295 ha y una intensidad de muestro del 1% que representa 3 ha de bosque evaluado con el fin de estimar el volumen maderable por ha a partir de 10 cm de DAP, composición florística y las especies de mayor abundancia.

La ejecución tuvo dos fases: de pre-campo consistió en la recopilación de información, fotointerpretación mapeo y el У planeamiento del inventario exploratorio; la fase de campo que consistió en el planeamiento del diseño de muestreo, distribución de muestras, acceso y apertura de trochas, conformación de la brigada y la instrucción del personal y la obtención de la información.

Para la estratificación de los bosques (forestal y protección) se han empleado las hojas de restitución fotogramétrica a escala 1/10000 del Proyecto Especial Alto Huallaga, con la cual se han identificado los estratos y sobre el cual se ha establecido bloques I y II para el bosque forestal y bloque III para el bosque de protección. Cada bloque consta de 4 parcelas con 10 subparcelas de 25x10 m por bloque, que constituyeron las fajas de muestreo.

De los análisis respectivos se establece que el

potencial maderable del BRUNAS es de 203.109 m/2ha (Bosque forestal) y 94.172 m3/ha (bosque de protección) con fuste 1; 101.597 m/2 ha (bosque forestal) y 48.259 m³/ha (bosque de protección) con fuste 2 y 47.135 m/2 ha (bosque forestal) y 21.435 m3/ha (bosque de protección) con fuste 3.

La clase diamétrica 10-39 cm aporta en el volumen total maderable con el 49.451% (Fuste 1), 68.910% (Fuste 2) y el 81.982% (Fuste 3) de los bosques forestales más protección.

La composición florística es heterogénea, con 32 familias, 70 géneros, 111 especies y 1,124 árboles en el bosque forestal y 569 árboles en el bosque de protección.

El volumen comercial total maderable estimada de 57,705.568 m (Fuste 1+2+3) de BRUNAS, así como el volumen total aprovechable y recuperable, tiene posibilidades para desarrollar un plan de manejo.

En general, el inventario exploratorio reporta errores de muestreo mayor del 10%.

IX. BIBLIOGRAFIA

- ALLARD, R. 1965. Sistema internacional de medidas.
 Edit. Limusa Wiley. México. 63 p.
- 2. BARRENA, A. V. y C. P. LLERENA. 1988. Influencia de los errores de estimación de la altura en el cálculo del volumen. Revista Forestal del Perú. 15(1): 21 23 p.
- 3. BRUCE, D. y F. X. SCHUMACHER. 1965. Medición forestal.

 Traducción del inglés por Ramón Palazón y José

 Meza Nieto. Centro Regional de Ayuda Técnica.

 México. 454 p.
- 4. BUENO, Z. J: R. F. GONZALES: J. O. MALLEUX y E. L. ROSSL. 1969. Catálogo preliminar de las especies forestales del Perú. UNA, La Molina. Dirección General Forestal de Crianza y Tierras. Revista Forestal del Perú. 61 p.
- 5. COOPERACION TECNICA DEL GOBIERNO SUIZO COTESU

 INTERCOOPERATION. 1991. Inventario forestal para
 la evaluación de bosques en pequeñas áreas.

 Proyecto de capacitación y divulgación forestal.

 DGFF. Región Ucayali. Pucallpa, Perú. 63 p.
- 6. CHUNG, M. A. 1975. Inventario forestal estratificado en el Bosque Genaro Herrera. 110 p.

- ENCARNACION, C. F. 7. 1983. Nomenclatura de las especies forestales en el Perú. Proyecto PNUD/FAO/PER/81/002. Fortalecimiento de los programas de desarrollo forestal en la Selva Central. Documento de trabajo Nro. 7. Lima, 149 p.
- 8. FREY, R. E. 1969. Manual de inventario de bosques.
 Técnicas y procedimientos para Colombia, México,
 Centro Regional de Ayuda Técnica. 80 p.
- 9. FRISK, S. T. et al. 1982. Planificación y ejecución de inventarios para el abastecimiento oportuno y económico de las industrias forestales. Proyecto PNUD/FAO/PER/81/002. Fortalecimiento de los programas de desarrollo forestal en la Selva Central. Documento de trabajo Nro. 5. Lima, Perú. 70 p.
- 10. GALVAN, F. y E. MONTENEGRO. 1966. Inventario exploratorio de los bosques de la Unidad Técnica de Capacitación Forestal. Instituto de Selva. UNA, La Molina. Lima, Perú. 10 p.
- 11. GUERRA, S. W. 1971. Inventario forestal exploratorio,

 Bosque Nacional Von Humboldt (ES). Lima, Perú.

 32 p.
- 12. HUSCH, B. 1971. Planificación de un inventario forestal FAO. Roma, Italia. 70 p.
- 13. LOETSCH, F. y K. E. HALLER. 1964. Forest inventory.

 Munchen, BLV Verlags gasells Chaft. 436 p.

- 14. LEVANO, C. 1989. Clasificación de tierra por capacidad de uso mayor del bosque reservado de la UNAS. Facultad de Recursos Naturales Renovables. Tingo María, Perú. 18 p.
- 15. MALLEUX, O. J. y E. M. MONTENEGRO. 1971. Manual de desometría. Universidad Nacional Agraria la Molina. Proyecto FAO/UNDP Nro. 116. 216 p.
- 16. ----. 1985. Manual de inventarios forestales. UNA,

 La Molina. Lima, Perú. 198 p.
- 17. ----. 1974. Evaluación de los recursos forestales de SAIS Pampa-Pucallpa. UNA, La Molina. Lima, Perú. 98 p.
- 18. ----. 1982. Inventario forestal en bosques

 tropicales. Universidad Nacional Agraria, La

 Molina. Lima, Perú. 414 p.
- 19. MANUAL DE IDENTIFICACION DE ESPECIES FORESTALES.
 1990. Proyecto de Capacitación, extensión y divulgación forestal. 45 p.
- 20. MINISTERIO DE AGRICULTURA. 1972. Instructivo para el inventario forestal semidetallado del Bosque Nacional de Iparia. DCFF. Lima, Perú. 6 p.
- 21. ----. INSTITUTO NACIONAL FORESTAL y de FAUNA. 1985.

 Inventario forestal en el distrito forestal de Atalaya, Departamento de Ucayali. Dirección general de fomento forestal y de fauna, Dirección de manejo forestal. Lima, Perú. 61 p.

- 22. MONTENEGRO, E. 1966. Inventario exploratorio de los bosques de colinas de la UFCF, Aucayacu. Instituto de investigaciones forestales. UNA, La Molina. Lima, Perú. 25 p.
- 23. OFICINA NACIONAL DE EVALUACION DE RECURSOS NATURALES Y UNIVERSIDAD NACIONAL AGRARIA LA MOLINA. 1972. Inventario de los estudios y disponibilidad de los recursos forestales del Perú. Segunda aproximación. Proyecto FAO/UNDP 116. Lima, Perú. 340 p.
- 24. RIOS, T. J. 1990. Prácticas de dendrología tropical. UNALM, Facultad de ciencias forestales, REDINFOR, COTESU e INTERCOOPERATION. 2da. Edc. Lima, Perú. 189 p.
- 25. ----. 1988. Flora de los bosques secundarios de Pucallpa. UNALM, facultad de ciencias forestales. Lima, Perú. 202 p.
- 26. RODRIGUEZ, G. L. 1973. Dasonomía. Iquitos, Perú. 71p
- 27. SANCHES, L. 1962. Estudio forestal de la zona Tingo

 María-Tocache. SCIF. UNA, La Molina. Lima, Perú,

 6 p.
- 28. SPICHIGER, R,; J. MEROZ; P. A. LOIZEAU y L. STUTZ.

 1990. Contribución a la flora de la Amazonía

 Peruana. Los árboles del Arboretum Jenaro

 Herrera. Vol. II. Genova. 565 p.

29. UNA, LA MOLINA (PERU) y UNIVERSIDAD DE TORONTO (CANADA). 1987. Inventario forestal de los bosques secundarios de Pucallpa-San Alejandro. Universidad Nacional Agraria La Molina, Facultad de Ciencias Forestales. Lima, Perú. 102 p.

X_ ANEXO

FICHA DE COLECCION

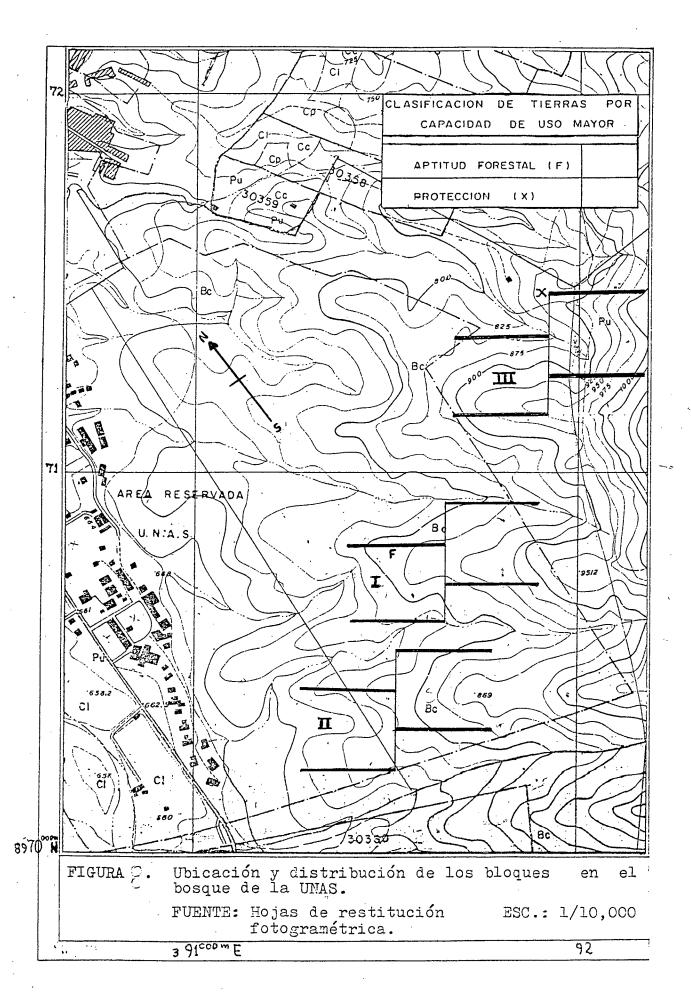
UNIVERSIDAD NACIONAL AGRARIA DE LA SELVA TINGO MARIA

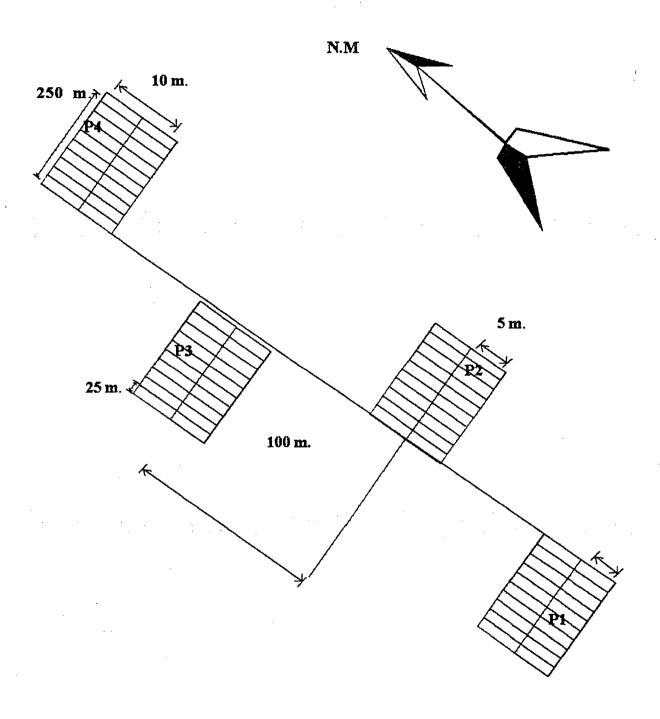
IDENTIFICACION DE ESPECIES FORESTALES-INVENTARIO EXPLOTACION DEL BRUNAS

MUESTRA Nro	•
N.V	•
N.C	
FAMILIA	•
BLOCK PARCELA SUB PARCELA	•
Nº DE ARBOL :	
FUSTE :	
ALTITUD	
HOJAS	
FLORES	•
FRUTOS	•
OTROS DATOS	
FECHA DE COLECCION	
COLECTOR	•

ELABORACION: RICARDO CARDENAS SEIJAS - 1995.

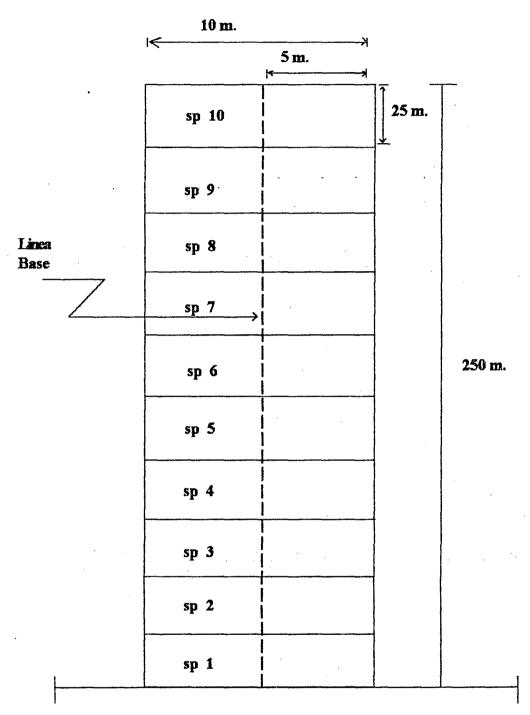
FORMATO DE LIBRETA DE CAMPO


Bloque No : Parcela No :


Fecha:

Sub-Parcela Nº : Azimut :

rcera N. :		na.	Lillu C	•			
Pendiente	Nº de Arbol Invent.	DODGOTE	DAP	Altura	Condicion de fuste	OBSERVACIONES	Croquis
(%) Arbol Invent.	ESPECIE NOMBRE COMUN	(cm)	(m)	1 2 3	OBSERVACIONES	Croquis Recorrido Linea base	
							0 m.
							25
							50
			İ				75
		,					100
							125
		4 d					150
							175
		,					200
							225
					٠.		250 m
			Ì				
		1					
					·		


Elaboración: Ricardo Cárdenas Seijas - 1995.

P: Parcela ---: Linea base

Figura 9. Detalle de ubicación y distribución de parcela en un bloque

Sp : Sub parcela de evaluación

Figura 10. Detalle de una parcela de muestreo experimental

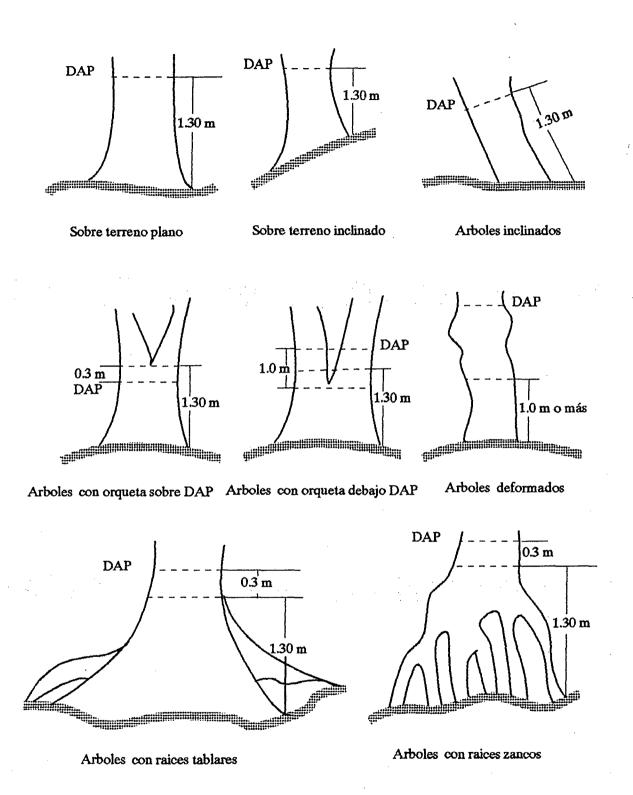
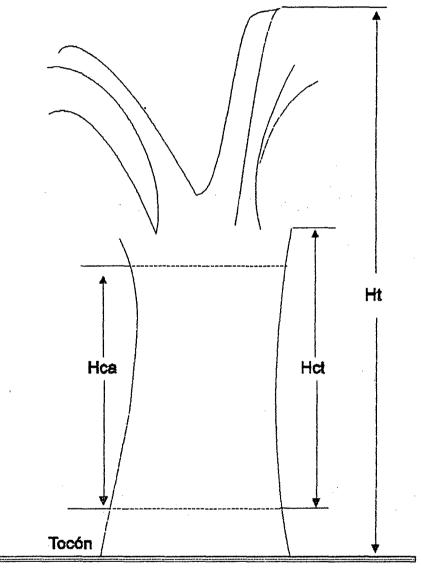



Figura 11. Medidas del DAP en diferentes situaciones

Hca: Altura comercial aserrable

Hct : Altura comercial total

Ht : Altura total

Figura 12. Clasificación de alturas de un árbol tipo

CUADRO 10. Distribución espacial de los individuos en el bosque de aptitud forestal UNAS - 1995.

ESPECIE	PARCELA					
	1	2	3	4		
Apeiba aspera	4	3	4	3		
Apeiba membranacea	. 3	1	2	2		
Acacia sp	1	. 1	1	0		
Aspidosperma marcgravianum	1	0	1	0		
Amonocarpus amazonicus	2	0	0	2		
Byrsonima artropoda	1	2	0	13		
Brosium lactescens	0	1.	0	0		
Brosimun sp	0	0	0	5		
Boccoa sp	4	1	3	2		
Billia sp	0	0	0	2		
Bathysa sp	0	1	0	0		
Casearia sylvestris	5	5	. З	2		
Capirona decorticans	7	0	12	0		
Cedrelinga catenaeformis	3	3	10	10		
Clarisia racemosa	. 0	1	7	8		
Cordia ucayaliensis	1	2	1	1		
Cabralea canjerana	1	, 2 .	0	2		
Cousapoa ovalifolia	0	0	0	1		
Cousapoa sp	0	0	0	2		
Calyptranthes sp	0	0	4	3		
Cecropia latiloba	. 7	5	3	0		
Cecropia engleriana	11	3	9	2		
Cecropia francisci	6	12	4	3		
Cecropia sciadophylla	1	1	3	0		
Cecropia membranacea	0	1	1	0		
Calophyllun brasiliense	0	1	0 -	0		
Didymopanax morototoni	2	6	3	. 0		

Dendropanax tessmannii	1	2	3	1
Dalbergia variabilis	0	1	2.	. 1
Dendrobangia sp	0	1	1	1
Entrolobiun cyclocarpun	0	6	0	2
Eschweilera ovalifolia	0	2	3	3
Ficus aff paraensis	1	0	2	0
Ficus mathewsii	2:	1	0	0
Ficus killipii	0	0	0	2
Ficus sp2	1	1	0	0
Guatteria guentheri	-3	6	6	2
Guarea trichiolioides	3	0	1	1
Hevea guianensis var. lutea	2	3	6	8
Hevea guianensis	10	8	8	10
Henrietella sylvestris	3	0	0	0
Himatanthus sucuuba	0	0	1	0
Inga marginata	4	4	0	2
Inga capitata	3	1	0	2
Inga alba	3	2	1	0
Inga lallensis	2	2	2	1
Inga thibaudiana	4	3	2	0
Inga edulis	1	0	0	0
Inga sp1	1	1	1	1
Inga sp2	0	0	0	1
Inga sp3	1	0	1	0
Inga sp4	2	3	3	0
Iryantera tricornis	2	4	1	4
Jacaranda copaia	4	10	5	4
Laetia procera	3	9	9	1
Licaria canella	2	2	1	1
Myriocarpa stipitata	0	1	0 .	0
Macrosamanea pedicellaris	5	7	8	0

٠.,

Macrolobiun acacisfoliun 3 2 1 0 Micropolis guyanensis 3 1 3 5 Marila laxiflora 0 1 4 2 Mabea piriri 0 2 2 0 Miconia holosericia 3 2 0 1 Miconia holosericia 3 2 0 1 Miconia bailloniana 1 1 0 2 Miconia longifolta 1 0 1 0 Miconia mazonica 2 0 4 0 Miconia spol 1 1 0 0 Miconia sp1 1 1 0 0 Miconia sp2 0 2 0 1 Miconia sp3 0 1 2 0 Nectandra turbacensis 1 0 5 1 Nectandra turbacensis 1 0 5 1 Nectandra sp 0 1 2 3 Ocotea glomerata 2 2 6 7							
Micropolis guyanensis 3 1 3 5 Marila laxiflora 0 1 4 2 Mabea piriri 0 2 2 0 Miconia holosericia 3 2 0 1 Miconia aulocalyx 2 1 3 1 Miconia bailloniana 1 1 0 2 Miconia longifolia 1 0 1 0 Miconia amazonica 2 0 4 0 Miconia theaezans 3 0 3 0 Miconia spl 1 1 0 0 Miconia sp2 0 2 0 1 Miconia sp3 0 1 2 0 Nectandra turbacensis 1 0 5 1 Nectandra turbacensis 1 0 5 5 Nectandra sp 0 1 2 3 Ocotea glomerata 2 2 6 7 Ocotea sp 4 0 1 0							
Micropolis guyanensis 3 1 3 5 Marila laxiflora 0 1 4 2 Mabea piriri 0 2 2 0 Miconia holosericia 3 2 0 1 Miconia aulocalyx 2 1 3 1 Miconia bailloniana 1 1 0 2 Miconia longifolia 1 0 1 0 Miconia amazonica 2 0 4 0 Miconia theaezans 3 0 3 0 Miconia spl 1 1 0 0 Miconia sp2 0 2 0 1 Miconia sp3 0 1 2 0 Nectandra turbacensis 1 0 5 1 Nectandra turbacensis 1 0 5 5 Nectandra sp 0 1 2 3 Ocotea glomerata 2 2 6 7 Ocotea sp 4 0 1 0				٠.,			
Marila laxiflora 0 1 4 2 Mabea piriri 0 2 2 0 Miconia holosericia 3 2 0 1 Miconia aulocalyx 2 1 3 1 Miconia bailloniana 1 1 0 2 Miconia longifolia 1 0 1 0 Miconia amazonica 2 0 4 0 Miconia spl 1 1 0 0 Miconia spl 1 1 0 0 Miconia spl 0 2 0 1 Miconia spl 0 1 2 0 Nectandra durbacensis 1 0 5 1 Nectandra spl 0 1 2 3 Ocotea glomerata		Macrolobiun acaciafoliun	3	2	`1	. Ø	
Mabea piriri 0 2 2 0 Miconia holosericia 3 2 0 1 Miconia aulocalyx 2 1 3 1 Miconia bailloniana 1 1 0 2 Miconia longifolia 1 0 1 0 Miconia amazonica 2 0 4 0 Miconia spl 1 1 0 0 Miconia sp2 0 2 0 1 Miconia sp3 0 1 2 0 Nectandra turbacensis 1 0 5 1 Nectandra cuspidata 0 4 5 5 Nectandra sp 0 1 2 3 Ocotea glomerata 2 2 6 7 Ocotea amazonica 1 0 1 0 Ocotea sp 4 0 1 0 Ormosia sp 0 1 0 1 Psychotria pichisensis 6 0 2 0 Pour		Micropolis guyanensis	3	1	3	5	
Miconia holosericia 3 2 0 1 Miconia aulocalyx 2 1 3 1 Miconia bailloniana 1 1 0 2 Miconia longifolia 1 0 1 0 Miconia amazonica 2 0 4 0 Miconia sp1 1 1 0 0 Miconia sp2 0 2 0 1 Miconia sp3 0 1 2 0 Nectandra turbacensis 1 0 5 1 Nectandra cuspidata 0 4 5 5 Nectandra sp 0 1 2 3 Ocotea glomerata 2 2 6 7 Ocotea amazonica 1 0 1 0 Ocotea sp 4 0 1 0 Ormosia sp 0 1 0 1 Pseudolmedia laevis 5 17 17 8 Psychotria pichisensis 6 0 2 0		Marila laxiflora	0	1	4	2	
Miconia aulocalyx 2 1 3 1 Miconia bailloniana 1 1 0 2 Miconia longifolia 1 0 1 0 Miconia amazonica 2 0 4 0 Miconia theaezans 3 0 3 0 Miconia spl 1 1 0 0 Miconia sp2 0 2 0 1 Miconia sp3 0 1 2 0 Nectandra turbacensis 1 0 5 1 Nectandra cuspidata 0 4 5 5 Nectandra sp 0 1 2 3 Ocotea glomerata 2 2 6 7 Ocotea amazonica 1 0 1 0 Ocotea sp 4 0 1 0 Ocotea sp 4 0 1 0 Ormosia sp 0 1 0 1 Psychotria pichisensis 5 17 17 8 Pouroma		Mabea piriri	0	2	2	0	
Miconia bailloniana 1 1 0 2 Miconia longifolia 1 0 1 0 Miconia amazonica 2 0 4 0 Miconia theaezans 3 0 3 0 Miconia spl 1 1 0 0 Miconia sp2 0 2 0 1 Miconia sp3 0 1 2 0 Nectandra turbacensis 1 0 5 1 Nectandra cuspidata 0 4 5 5 Nectandra sp 0 1 2 3 Ocotea glomerata 2 2 6 7 Ocotea amazonica 1 0 1 0 Ocotea sp 4 0 1 0 Ornosia sp 0 1 0 1 Pseudolmedia laevis 5 17 17 8 Psychotria pichisensis 6 0 2 0 Pouroma cecropiaefolia 1 0 2 1		Miconia holosericia	3	2	0	1	i
Miconia longifolia 1 0 1 0 Miconia amazonica 2 0 4 0 Miconia theaezans 3 0 3 0 Miconia sp1 1 1 0 0 Miconia sp2 0 2 0 1 Miconia sp3 0 1 2 0 Nectandra turbacensis 1 0 5 1 Nectandra cuspidata 0 4 5 5 Nectandra sp 0 1 2 3 Ocotea glomerata 2 2 6 7 Ocotea amazonica 1 0 1 0 Ocotea sp 4 0 1 0 Ormosia sp 0 1 0 1 Psychotria pichisensis 6 0 2 0 Pouroma minor 3 8 19 4 Pouroma cecropiaefolia 1 0 2 1 Portium sp 1 1 0 1 Portium		Miconia aulocalyx	2	1	3	1	
Miconia amazonica 2 0 4 0 Miconia theaezans 3 0 3 0 Miconia sp1 1 1 0 0 Miconia sp2 0 2 0 1 Miconia sp3 0 1 2 0 Nectandra turbacensis 1 0 5 1 Nectandra cuspidata 0 4 5 5 Nectandra sp 0 1 2 3 Ocotea glomerata 2 2 6 7 Ocotea amazonica 1 0 1 0 Ocotea sp 0 1 0 1 Ocotea sp 0 1 0 1 Pseudolmedia laevis 5 17 17 8 Psychotria pichisensis 6 0 2 0 Pouroma minor 3 8 19 4 Pouroma cecropiaefolia 1 0 2 1 Pouteria procera 0 0 3 3 Piptademia sp 1 2 1 1 Perebea sp 1 1 5 7 Persea sp 1 0 0 1 Protium sp1 2 10 2 9 Protium sp2 4 4 1 5		Miconia bailloniana	1	1	0	2	
Miconia theaezans 3 0 3 0 Miconia sp1 1 1 0 0 Miconia sp2 0 2 0 1 Miconia sp3 0 1 2 0 Nectandra turbacensis 1 0 5 1 Nectandra cuspidata 0 4 5 5 Nectandra sp 0 1 2 3 Ocotea glomerata 2 2 6 7 Ocotea amazonica 1 0 1 0 Ocotea sp 4 0 1 0 Ormosia sp 0 1 0 1 Pseudolmedia laevis 5 17 17 8 Psychotria pichisensis 6 0 2 0 Pouroma minor 3 8 19 4 Pouroma cecropiaefolia 1 0 2 1 Perebea sp 1 1 5 7 Perebea sp 1 0 0 1 Protium sp1<		Miconia longifolia	1	0	1	0	
Miconia sp1 1 1 0 0 Miconia sp2 0 2 0 1 Miconia sp3 0 1 2 0 Nectandra turbacensis 1 0 5 1 Nectandra cuspidata 0 4 5 5 Nectandra sp 0 1 2 3 Ocotea glomerata 2 2 6 7 Ocotea amazonica 1 0 1 0 Ocotea sp 4 0 1 0 Ormosia sp 0 1 0 1 Pseudolmedia laevis 5 17 17 8 Psychotria pichisensis 6 0 2 0 Pouroma minor 3 8 19 4 Pouroma cecropiaefolia 1 0 2 1 Persea sp 1 2 1 1 Persea sp 1 0 0 1 Protium sp1 2 10 2 9 Protium sp2		Miconia amazonica	2	0	4	0	
Miconia sp2 0 2 0 1 Miconia sp3 0 1 2 0 Nectandra turbacensis 1 0 5 1 Nectandra cuspidata 0 4 5 5 Nectandra sp 0 1 2 3 Ocotea glomerata 2 2 6 7 Ocotea amazonica 1 0 1 0 Ocotea sp 4 0 1 0 Ormosia sp 0 1 0 1 Pseudolmedia laevis 5 17 17 8 Psychotria pichisensis 6 0 2 0 Pouroma minor 3 8 19 4 Pouroma cecropiaefolia 1 0 2 1 Pouteria procera 0 0 3 3 Piptademia sp 1 2 1 1 Persea sp 1 0 0 1 Protium sp1 2 10 2 9 Protium sp		Miconia theaezans	3	0	3	0	
Miconia sp3 0 1 2 0 Nectandra turbacensis 1 0 5 1 Nectandra cuspidata 0 4 5 5 Nectandra sp 0 1 2 3 Ocotea glomerata 2 2 6 7 Ocotea amazonica 1 0 1 0 Ocotea sp 4 0 1 0 Ormosia sp 0 1 0 1 Pseudolmedia laevis 5 17 17 8 Psychotria pichisensis 6 0 2 0 Pouroma minor 3 8 19 4 Pouroma cecropiaefolia 1 0 2 1 Pouteria procera 0 0 3 3 Piptademia sp 1 2 1 1 Persea sp 1 0 0 1 Protium sp1 2 10 2 9 Protium sp2 4 4 1 5		Miconia sp1	1	1	0	0	
Nectandra turbacensis 1 0 5 1 Nectandra cuspidata 0 4 5 5 Nectandra sp 0 1 2 3 Ocotea glomerata 2 2 6 7 Ocotea amazonica 1 0 1 0 Ocotea sp 4 0 1 0 Ormosia sp 0 1 0 1 Pseudolmedia laevis 5 17 17 8 Psychotria pichisensis 6 0 2 0 Pouroma minor 3 8 19 4 Pouroma cecropiaefolia 1 0 2 1 Pouteria procera 0 0 3 3 Piptademia sp 1 2 1 1 Persea sp 1 1 5 7 Persea sp 1 0 0 1 Protium sp1 2 10 2 9 Protium sp2 4 4 1 5	•	Miconia sp2	0	2	0	1	
Nectandra cuspidata 0 4 5 5 Nectandra sp 0 1 2 3 Ocotea glomerata 2 2 6 7 Ocotea amazonica 1 0 1 0 Ocotea sp 4 0 1 0 Ormosia sp 0 1 0 1 Pseudolmedia laevis 5 17 17 8 Psychotria pichisensis 6 0 2 0 Pouroma minor 3 8 19 4 Pouroma cecropiaefolia 1 0 2 1 Pouteria procera 0 0 3 3 Piptademia sp 1 2 1 1 Persea sp 1 1 5 7 Persea sp 1 0 0 1 Protium sp1 2 10 2 9 Protium sp2 4 4 1 5		Miconia sp3	0	1	2	0	
Nectandra sp 0 1 2 3 Ocotea glomerata 2 2 6 7 Ocotea amazonica 1 0 1 0 Ocotea sp 4 0 1 0 Ormosia sp 0 1 0 1 Pseudolmedia laevis 5 17 17 8 Psychotria pichisensis 6 0 2 0 Pouroma minor 3 8 19 4 Pouroma cecropiaefolia 1 0 2 1 Pouteria procera 0 0 3 3 Piptademia sp 1 2 1 1 Perebea sp 1 1 5 7 Persea sp 1 0 0 1 Protium sp1 2 10 2 9 Protium sp2 4 4 1 5		Nectandra turbacensis	1	0	5	1	
Ocotea glomerata 2 2 6 7 Ocotea amazonica 1 0 1 0 Ocotea sp 4 0 1 0 Ormosia sp 0 1 0 1 Pseudolmedia laevis 5 17 17 8 Psychotria pichisensis 6 0 2 0 Pouroma minor 3 8 19 4 Pouroma cecropiaefolia 1 0 2 1 Pouteria procera 0 0 3 3 Piptademia sp 1 2 1 1 Persea sp 1 0 0 1 Protium sp1 2 10 2 9 Protium sp2 4 4 1 5		Nectandra cuspidata	0	4	5	5	•
Ocotea amazonica 1 0 1 0 Ocotea sp 4 0 1 0 Ormosia sp 0 1 0 1 Pseudolmedia laevis 5 17 17 8 Psychotria pichisensis 6 0 2 0 Pouroma minor 3 8 19 4 Pouroma cecropiaefolia 1 0 2 1 Pouteria procera 0 0 3 3 Piptademia sp 1 2 1 1 Perebea sp 1 1 5 7 Persea sp 1 0 0 1 Protium sp1 2 10 2 9 Protium sp2 4 4 1 5		Nectandra sp	0	1	2	3	
Ocotea sp 4 0 1 0 Ormosia sp 0 1 0 1 Pseudolmedia laevis 5 17 17 8 Psychotria pichisensis 6 0 2 0 Pouroma minor 3 8 19 4 Pouroma cecropiaefolia 1 0 2 1 Pouteria procera 0 0 3 3 Piptademia sp 1 2 1 1 Perebea sp 1 1 5 7 Persea sp 1 0 0 1 Protium sp1 2 10 2 9 Protium sp2 4 4 1 5		Ocotea glomerata	2	2	6	7	•
Ormosia sp 0 1 0 1 Pseudolmedia laevis 5 17 17 8 Psychotria pichisensis 6 0 2 0 Pouroma minor 3 8 19 4 Pouroma cecropiaefolia 1 0 2 1 Pouteria procera 0 0 3 3 Piptademia sp 1 2 1 1 Perebea sp 1 1 5 7 Persea sp 1 0 0 1 Protium sp1 2 10 2 9 Protium sp2 4 4 1 5		Ocotea amazonica	1	0	1	0	· -
Pseudolmedia laevis 5 17 17 8 Psychotria pichisensis 6 0 2 0 Pouroma minor 3 8 19 4 Pouroma cecropiaefolia 1 0 2 1 Pouteria procera 0 0 3 3 Piptademia sp 1 2 1 1 Perebea sp 1 1 5 7 Persea sp 1 0 0 1 Protium sp1 2 10 2 9 Protium sp2 4 4 1 5		Ocotea sp	4	0	1	0	
Psychotria pichisensis 6 0 2 0 Pouroma minor 3 8 19 4 Pouroma cecropiaefolia 1 0 2 1 Pouteria procera 0 0 3 3 Piptademia sp 1 2 1 1 Perebea sp 1 1 5 7 Persea sp 1 0 0 1 Protium sp1 2 10 2 9 Protium sp2 4 4 1 5		Ormosia sp	0	1	0	1	
Pouroma minor 3 8 19 4 Pouroma cecropiaefolia 1 0 2 1 Pouteria procera 0 0 3 3 Piptademia sp 1 2 1 1 Perebea sp 1 1 5 7 Persea sp 1 0 0 1 Protium sp1 2 10 2 9 Protium sp2 4 4 1 5		Pseudolmedia laevis	5	17	17	8	
Pouroma cecropiaefolia 1 0 2 1 Pouteria procera 0 0 3 3 Piptademia sp 1 2 1 1 Perebea sp 1 1 5 7 Persea sp 1 0 0 1 Protium sp1 2 10 2 9 Protium sp2 4 4 1 5		Psychotria pichisensis	6	0	2	0	
Pouteria procera 0 0 3 3 Piptademia sp 1 2 1 1 Perebea sp 1 1 5 7 Persea sp 1 0 0 1 Protium sp1 2 10 2 9 Protium sp2 4 4 1 5		Pouroma minor	3	8	19	4	
Piptademia sp 1 2 1 1 Perebea sp 1 1 5 7 Persea sp 1 0 0 1 Protium sp1 2 10 2 9 Protium sp2 4 4 1 5		Pouroma cecropiaefolia	1	0	2	1	
Perebea sp 1 1 5 7 Persea sp 1 0 0 1 Protium sp1 2 10 2 9 Protium sp2 4 4 1 5		Pouteria procera	0	0	3	3	
Persea sp 1 0 0 1 Protium sp1 2 10 2 9 Protium sp2 4 4 1 5		Piptademia sp	1	2	1	1	
Protium sp1 2 10 2 9 Protium sp2 4 4 1 5		Perebea sp	1	1	5	7	
Protium sp2 4 4 1 5		Persea sp	1	0	0	1	
•		Protium sp1	2	10	. 2	9	
Protium sp3 0 4 0 1	•	Protium sp2	4	4	1	5	
		Protium sp3	0	4	Ø	1	

٠				-		
	Parkia sp1	0	0	`1	0	
	Parkia sp2	2	1	• 1	• 1	
	Qualea implexa	6	2	4	4	
	Rollina insignis	2	2	1	0	
	Senefeldera macrofila	29	45	37	73	,
·	Senna sylvestris	11	1 .	0	0	,
	stylogyne aff. cauliflora	1	2	2	1	
	Sclerolobium setiferum	2	1	0	1	
	Symphonia globulifera	1	2	4	1	
	Sterculea apetala	1	2	1	0	
	Spondias sp	0	0	2	4	
	Sloanea sp	0	0	0	1	
	Theobroma ovobatum	1	4	5	8	
	Tapirira guianensis	9	3	5	3	
	Tapirira peckoltiana	0	0	2	3	
	Vitex sp	1	1	1	6	
	Virola pavonis	2	8	5	8	
	Vismia rusby	1	2	2	3	•
	Vismia cayenensis	1	0	0	0	

CUADRO 11. Distribución espacial de los individuos en el bosque de protección UNAS - 1995.

ESPECIE	PA			PARCELA		
	1	2	3	4		
Apeiba membranacea	4	0	0	1		
Apeiba aspera	1	1	0	2		
Acacia sp	0	2	4	1		
Bathysa sp	2	1	0	0 -		
Byrsonima arthropoda	0	1	8	20		
Boccoa sp	0	4	0	0		
Brosium lactescens	0	0	1	0		
Brosimun sp	0	0	Ø	1		
Billia sp	0	0	1	1		
Casearia sylvestris	0	4	0	1		
Cecropia francisci	3	1	0	0		
Cecropia latiloba	1	3	0	1		
Cecropia ficifolia	1	0	0	0		
Cecropia membranacea	1	0	0	0		
Cecropia engleriana	0	2	1	1		
Cecropia sciadophylla	0	1	0	0		
Cedrelinga catenaeformis	1	2	0	. 0		
Clarisia racemosa	3	1	6	8		
Cordia ucayaliensis	1	2	0	0		
Capirona decorticans	0	1	0	0		
Cousapoa ovalifolia	0	1	1	2		
Cousapoa sp	2	0	0	0		
Calyptranthes sp	1	1	3	1		
Dendropanax tessmannii	3	1	0	3		
Didymopanax morototoni	Ø	2	Ø	0		
Dalbergia variabilis	1	2	1	1		
Dendrobangia sp	3 .	1	0	3		

Enterolobiun cyclocarpun	0	0	1	- 2
Eschweilera ovalifolia	0	0	1	1
Ficus killipii	1	2	2	1
Ficus aff paraensis	0	1	Ø	0
Ficus sp1	0	1	1	0
Ficus sp2	1	0	0	1
Guateria guentheri	1	7	2	0
Guarea Trichiolioides	1	0	0	0
Hevea guianensis var. lutea	3	1	4	4
Hevea guianensis	4	6	12	9
Henrietella sylvestris	3	0	0	Ø
Inga marginata	1	6	6	1
Inga alba	1	1	0	1
Inga capitata	0	0	0	1
Inga sp1	1	1	0	0
Inga sp2	2	2	0	0
Inga sp3	2	1	0	0
Inga sp4	1	1	1	1
Iryanthera tricornis	1	0	1	1
Jacaranda copaia	2	2	0	0
Jacaratia digitata	. 3	0	0	0
Licaria canella	1	0	2	1
Laetia procera	1	1	0	2
Macrosamanea pedicellaris	2	1	3	2
Mabea piriri	1	0	0	0
Marila laxiflora	0	0	2	0
Micropholis guyanensis	1	1	0	1
Macrolobiun acaciafolium	0	2	0	2
Miconia theaezans	1	0	0	0
Miconia holosericea	1	0	1	. 0
Miconia longifolia	0	1	0	0

Miconia bailloniana	0	2	0	. 0
Miconia aulocalix	0	0	1	0
Miconia sp1	0	1	1	0
Miconia sp2	0	0	0	1
Miconia sp3	0	0	1	0
Nectandra turbacensis	1	1	0	2
Nectandra cuspidata	0	0 .	1	4
Nectandra sp	1	1	3	1
Ocotea glomerata	2	1	4	7
Ocotea amazonica	0	0	2	0
Ocotea sp	0	1	1	0
Pseudolmedia laevis	5	4	6	14
Pouroma minor	3	1	- 3	. 1
Pouroma cecropiaefolia	0	0	0	3
Psychotria pichisensis	1	0	0	Ø
Pouteria procera	. 0	2	3	6
Perebea sp	2	2	2	1
Persea sp	2	0	0	0
Piptademia sp	4	2	2	. 1
Parkia sp1	2	1	0	0
Parkia sp2	2	0	, 1	0
Protium sp2	1	0	1	1
Protium sp3	0	0	0	1:
Qualea implexa	0	1	1	1
Rollina insignis	1	0	0	0
Senefeldera macrofilla	7	8	30	19
Sclerolobium setiferum	2	0	0	0
Symphonia globulifera	. 1	1	6	2
Senna sylvestris	0	1	0	0
Sterculea apetala	0	0	0	1
Sloanea sp	1	2	1	4

			~.		
Spondias sp	0	1	1	1	
Tapirira guianensis	5	4	3	2	
Tapirira peckoltiana	2	0	1	2	
Theobroma ovobatum	3	4	3	· 2	
Virola pavonis	3	2	9	3	!
Vitex sp	1	0	1	2	

.

CUADRO 12. Volumen y número de árboles con fuste 1 en el bosque de aptitud forestal UNAS - 1995.

	BLOQUE		TOTAL
ESPECIE	I	ΙΙ	; :
CATEGORIA	10 -39 cm de	DAP	
Annonocarpus amazonicus	(-) (2) 0.528	(2) 0.528
Apeiba aspera	(2) 0.808 (4) 0.340	(6) 1.148
Acacia sp	(1) 0.275 (1) 0.070	(2) 0,345
Boccoa sp	(2) 0.403 (1) 0.718	(3) 1.121
Bathysa sp	(1) 0.291 (-)	(1) 0.291
Brosimun sp	(-) (3	3) 1.217	(3) 1.217
Billia sp	(1) 0.055 (·	-)	(1) 0.055
Capirona decorticans	(4) 0.680 (3	3) 1.186	(7) 1.866
Casearia silvestris	(3) 0.331 (4	4) 0.834	(7) 1.165
Cabralea canjerana	(3) 0.484 (3	1) 0.241	(4) 0.725
Cedrelinga catenaeformis	(4) 0.538 (4	4) 1.291	(8) 1.829
Calyptranthes sp	(1) 0.213 (4	4) 0.768	(5) 0.981
Clarisia racemosa	(5) 0.440 (5	5) 1.004	(10)1.444
Cordia ucayaliensis	(1) 0.048 (-	-)	(1) 0.048
Cousapoa ovalifolia	(1) 0.113 (-	-)	(1) 0.113
Cousapoa sp	(1) 0.047 (-	-)	(1) 0.047
Cecropia latiloba	(3) 0.245 (-	-)	(3) 0.245
Cecropia engleriana	(9) 1.168 (2	2) 0.402	(11)1.570
Cecropia francisci	(1) 0.517 (3	3) 0.854	(4) 1.371
Cecropia sciadophilla	(1) 0.028 (1	L) 0.330	(2) 0.358
Ceropia membranacea	(-) (1	1) 0.206	(1) 0.206
Didymopanax morototoni	(1) 0.219 (5	5) 3.429	(6) 3.648
Dendrobangia sp	(2) 0.187 (1	L) 0.561	(3) 0.748
Enterolobium cyclocarpun	(1) 0.302 (1	L) 0.170	(2) 0.409
Eschweilera ovalifolia	(3) 0.965 (2	2) 0.369	(5) 1.334
Ficus aff. paraensis	(1) 0.655 (-	-)	(1) 0.655
Guatteria guentheri	(3) 0.995 (4	1.038	(7) 2.033
Guarea trichioloides	(1) 0.241 (1	0.154	(2) 0.395

·		14.	•
Hevea guianensis var. lutea	(4) 0.767	(2) 0.685	(6) 1.452
Hevea guianensis	(9) 0.658	(3) 0.500	(12)1.158
Henrietella sylvestris	(1) 0.079	(1) 0.125	(2) 0.204
Iryanthera tricornis	(5) 2.349	(2) 0.305	(7) 2.654
Inga capitata	(3) 1.318	(-)	(3) 1.318,
Inga alba	(1) 0.024	(-)	(1) 0.024
Inga lallensis	(1) 0.561	(2) 0.207	(3) 0.768
Inga marginata	(-)	(1) 0.154	(1) 0.154
Inga thibaudiana	(-)	(3) 0.240	(3) 0.240
Inga sp1	(-)	(2) 0.452	(2) 0.452
Inga sp2	(1) 0.020	(-)	(1) 0.020
Inga sp3	(-)	(2) 0.218	(2) 0.218
Jacaranda copaia	(10)2.420	(2) 0.697	(12)3.117
Laetia procera	(3) 0.327	(3) 0.931	(6) 1.258
Licaria canella	(2) 0.149	(1) 0.074	(3) 0.223
Macrosamanea pedicellaris	(5) 1.209	(1) 0.447	(6) 1.656
Macrolobium acaciafolium	(2) 0.375	(2) 0.487	(4) 0.862
Micropholis guyanensis	(5) 1.830	(2) 1.763	(7) 3.593
Marila laxiflora	(2) 1.213	(-)	(2) 1.213
Mabea piriri	(2) 0.060	(-)	(2) 0.060
Miconia aulocalyx	(1) 0.581	(1) 0.032	(2) 0.613
Miconia bailloniana	(2) 0.156	(1) 0.037	(3) 0.192
Miconia theaezans	(-)	(3) 1.284	(3) 1.284
	(-),		
Miconia longifolia	(-) - -	(2) 1.851	(2) 1.851
	(-)		
Nectandra turbacensis	(3) 1.029	(2) 0.725	(5) 1.754
Nectandra cuspidata	(-)	(2) 0.067	(2) 0.067
Nectandra sp ,	(1) 0.334	(1) 0.048	(2) 0.382
Ocotea glomerata	(4) 1.068	(2) 0.151	(6) 1.219
Ocotea amazonica	(2) 0.190	(-)	(2) 0.190
Ocotea sp	(3) 1.258	(1) 0.065	(4) 1.323
Ormosia sp	(1) 0.056	(-)	(1) 0.056
Pseudolmedia laevis	(14)3.877	(8) 1.389	(22)5.266 4
Pouroma minor	(3) 0.731	(14)2.206	(17)2.937

	Pouroma cecropiaefolia	(1) 0.113	(2) 0.602	(3) 0.715	
	Pouteria procera	(2) 1.001	(1) 0.793	(3) 1.794	
	Myriocarpa stipitata	(-)	(1) 0.388	(1) 0.388	
	Piptademia sp	(-)	(1) 0.412	(1) 0.412	
	Perebea sp	(7) 1.330	(1) 0.139	(8) 1.469	
	Persea sp	(1) 0.315	(-)	(1) 0.315	
	Protium sp1	(5) 0.895	(4) 0.470	(9) 1.365	
	Protium sp2	(3) 0.923	(4) 1.085	(7) 2.008	
	Protium sp3	(3) 0.610	(1) 0.139	(4) 0.749	
	Parkia spestris	(1) 0.040	(3) 0.175	(4) 0.215	
	Qualea implexa	(1) 0.407	(5) 0.132	(6) 0.539	
	Rollina insignis	(-)	(3) 0.981	(3) 0.981	
•	Senefeldera macrophylla	(47)4.927	(26)3.477	(73)8.404	•
	Symphonia globulifera	(2) 0.932	(3) 0.364	(5) 1.296	
	Stylogyne aff. cauliflora	(1) 0.063	(1) 0.216	(2) 0.279	
	Spondias sp	(1) 0.903	(1) 0.099	(2) 1.002	
	Sloanea sp	(1) 0.643	(-)	(1) 0.643	
	Senna sylvestris	(-)	(5) 0.391	(5) 0.391	
	Tapirira guianensis	(4) 1.757	(3) 0.968	(7) 2.725	
	Tapirira peckoltiana	(1) 0.676	(1) 0.132	(2) 0.808	
	Theobroma ovobatum	(2) 0.123	(5) 0.336	(7) 0.459	-
,	Virola pavonis	(6) 1.753	(5) 1.792	(11)3.545	
	Vismia rusby	(-)	(1) 0.016	(1) 0.016	
	Vismia cayennensis	(1) 0.021	(-)	(1) 0.021	
	Vitex sp	(3) 0.717	(1) 0.606	(4) 1.323	
	CATEGORI	A 40-69 cm	DAP		
	Apeiba aspera	(1) 1.336	(-)	(1) 1.336	
	Apeiba membranacea	(1) 1.113	(-)	(1) 1.113	
	Boccoa sp	(1) 1.455	(-)	(1) 1.455	
	Brosium lactescens	(-)	(1) 2.297	(1) 2.297	
	Brosimum sp	(-)	(1) 1.597	(1) 1.597	
	Cedrelinga catenaeformis	(-)	(8)12.618	(8)12.618	
	Calophyllum brasiliense	(-)	(1) 1.093	(1) 1.093	
	Dendropanax tessmannii	(-)	(1) 2.527	(1) 2.527	
	Dalbergia variabilis	(-)	(1) 2.959	(1) 2.959	
,	Eschweilera ovalifolia	(1) 1.924	(-)	(1) 1.924	

Guarea tricholiodes	(2) 5.612	(-)	(2) 5.612
Guatteria guentheri	(-)	(1) 1.056	(1) 1.056
Hevea guianensis var lutea	(-)	(1) 1.144	(1) 1.144
Inga lallensis	(1) 2.162	(-)	(1) 2.162
Jacaranda copaia	(3) 3.516	(1) 2.586	(4) 6.102
Laetia procera	(1) 1.267	(1) 1.853	(2) 3.120
Macrosamanea pedicellaris	(3) 6.702	(2) 7.154	(5)13.856
Micropholis guyanensis	(1) 1.716	(-)	(1) 1.716
Nectandra turbacensis	(1) 2.702	(-)	(1) 2.702
Nectandra cuspidata	(1) 1.164	(1) 0.799	(2) 1.963
Nectandra sp	(1) 1.261	(-)	(1) 1.261
Ocotea glomerata	(1) 1.056	(-)	(1) 1.056
Pouroma minor	(-)	(1) 1.745	(1) 1.745
Protium sp2	(1) 1.093	(-)	(1) 1.093
Pseudolmedia laevis	(-)	(1) 1.109	(1) 1.109
Senefeldera macrophylla	(-)	(1) 2.774	(1) 2.774
Tapirira guianensis	(1) 2.021	(1) 3.448	(2) 5.469
Virola pavonis	(-)	(1) 2.702	(1) 2.702
Vitex sp	(2) 2.004	(2) 1.603	(4) 3.607
Enterolobium cyclocarpum	(-)	(1) 1.100	(1) 1.100
CATEGORIA 76	9 - 99 cm D	E DAP	
Cedrelinga catenaeformis	(1) 4.804	(1) 7.920	(2)12.724
Ormosia sp	(1) 4.348	(-)	(1) 4.348

^{*}Los números entre parentesis representa el número de árboles.

CUADRO 13. Volumen y número de árboles con fuste 2 en el bosque de aptitud forestal UNAS - 1995.

The same of the state of the st	BLOQUE	e financia de la constitución de	TOTAL
ESPECIE			_
	Ι	II	
CATEGORIA	10 -39 cm	de DAP	
Annonocarpus amazonicus	(-)	(2) 0.159	(1) 0.159
Apeiba membranacea	(-)	(2) 0.167	(2) 0.167
Acacia sp	(1) 0.204	(-)	(1) 0,204
Boccoa sp	(3) 0.754	(-)	(3) 0.754
Cecropia latiloba	(4) 0.732	(3) 0.534	(7) 1.266
Cecropia engleriana	(4) 0.527	(7) 2.533	(11)3.060
Cecropia francisci	(5) 1.455	(7) 1.255	(12)2.700
Cecropia sciadophylla	(2) 1.192	(-)	(2) 1.192
Cecropia membranacea	(1) 0.855	(-)	(1) 0.855
Cabralea canjerana	(1) 0.070	(-)	(1) 0.070
Cordia ucayaliensis	(-)	(2) 0.325	(2) 0.325
Clarisia racemosa	(3) 0.747	(1) 0.214	(4) 0.961
Calyptrnthes sp	(1) 0.113	(1) 0.436	(2) 0.549
Capirona decorticans	(6) 0.897	(2) 0.518	(8) 1.415
Cedrelinga catanaeformis	(-)	(4) 1.133	(4) 1.133
Cousapoa sp	(1) 0.495	(-)	(1) 0.495
Didymopanax morototoni	(1) 0.214	(1) 0.291	(2) 0.505
Dendropanax tessmannii	(2) 0.379	(1) 0.065	(3) 0.444
Dalbergia variabilis	(1) 0.065	(1)0.808	(2) 0.873
Dendrobangia sp	(1) 0.040	(1) 0.056	(2) 0.096
Enterolobium cyclocarpun	(2) 0.650	(-)	(2) 0.650
Eschweilera ovalifolia	(1) 0.022	(1) 0.521	(2) 0.543
Ficus aff. paraensis	(2) 0.081	(-)	(2) 0.081
Ficus mathewsii	(1) 0.125	(-)	(1) 0.125

	Ficus sp2	(1) 0.412	(1) 0.084	(2) 0.496
	Ficus killipii	(-)	(1) 0.075	(1) 0.075
	Guatteria guentheri	(2) 1.113	(4) 1.713	(6) 2.826
·	Hevea guianensis var. lutea	(4) 0.486	(-)	(4) 0.486
	Hevea guianensis	(13)1.016	(4) 1.228	(17)2.244
	Henrietella sylvestris	(1) 0.064	(-)	(1) 0.064
	Himatanthus sucuuba	(1) 0.033	(-)	(1) 0.033
	Inga marginata	(2) 0.135	(3) 0.456	(5) 0.591
•	Inga capitata	(2) 0.653	(-)	(2) 0.653
* .	Inga thibaudiana	(4) 0.515	(-)	(4) 0.515
	Inga alba	(-)	(1) 0.148	(1) 0.148
	Inga lallensis	(-)	(2) 0.208	(2) 0.208
	Inga edulis	(-)	(1) 0.065	(1) 0.065
	Inga sp4	(4) 0.416	(1) 0.281	(5) 0.697
	Iryanthera tricornis	(2) 0.227	(1) 0.074	(3) 0.301
	Jacaranda copaia	(1) 0.873	(2) 0.761	(3) 1.634
	Laetia procera	(6) 0.662	(3) 0.616	(9) 1.278
	Licaria canella	(-)	(2) 0.346	(2) 0.346
	Micropholis guyanensis	(-)	(3) 0.773	(3) 0.773
	Macrosamanea pedicellaris	(3) 1.211	(6) 1.309	(9) 2.520
	Macrolobium acaciafolium	(1) 0.159	(1) 0.297	(2) 0.456
	Marila laxiflora	(2) 1.145	(1) 0.111	(3) 1.256
	Miconia theaezans	(-)	(3) 0.601	(3) 0.601
	Miconia aulocalyx	(-)	(1) 0.346	(1) 0.346
	Miconia amazonica	(-)	(1) 0.053	(1) 0.053
	Miconia bailloniana	(-)	(1) 0.071	(1) 0.071
	Miconia sp1	(1) 0.023	(-)	(1)0.023_
	Miconia sp2	(1) 0.198	(1) 0.027	(2) 0.225
	Miconia sp3	(3) 0.165	(-)	(3) 0.165

Nectandra cuspidata	(2) 0.485	(3) 0.903	(5) 1.388
Nectandra sp	(-)	(3) 0.339	(3) 0.339
Ocotea glomerata	(2) 0.233	(4) 1.525	(6) 1.758
Ocotea sp	(-)	(1) 0.404	(1) 0.404
Pseudolmedia laevis	(7) 1.351	(6) 1.313	(13)2.664
Psychotria pichisensis	(2) 0.199	(1) 1.171	(3) 1.370
Pouroma minor	(2) 0.234	(7) 1.370	(9) 1.604
Pouroma cecropiaefolia	(-)	(1) 0.334	(1) 0.334
Perebea sp	(3) 0.343	(1) 0.253	(4) 0.596
Piptademia sp	(1) 0.143	(2) 0.271	(3) 0.414
Persea sp	(1) 0.060	(-)	(1) 0.060
Pouteria procera	(-)	(2) 0.285	(2) 0.285
Protium sp1	(5) 0.562	(2) 0.146	(7) 0.708
Protium sp2	(1) 0.044	(3) 0.368	(4) 0.412
Protium sp3	(1) 0.047	(-)	(1) 0.047
Parkia sp2	(1) 0.048	(-)	(1) 0.048
Qualea implexa	(5) 1.497	(1) 0.407	(6) 1.904
Rollina insignis	(1) 0.264	(-)	(1) 0.264
Senefeldera macrophylla	(47)4.091	(27)3.665	(74)7.756
Senna sylvestris	(-)	(6) 0.300	(6) 0.300
Stylogyne aff. cauliflora	(-)	(2) 0.158	(2) 0.158
Symphonia globulifera	(-)	(1) 0.011	(1) 0.011
Sclerolobium setiferum	(3) 1.812	(-)	(3) 1.812
Tapirira guianensis	(2) 0.309 ′	(3) 0.223	(5) 0.532
Tapirira peckoltiana	(2) 0.353	(-)	(2) 0.353
Theobroma ovobatum	(4) 0.254	(5) 0.538	(9) 0.792
Virola pavonis	(3) 0.264	(3) 0.797	(6) 1.061
Vismia rusby	(5) 0.178	(2) 0.054	(7) 0.232
CATEG	ORIA 40 - 69	cm DAP	

Cedrelinga catenaeformis (1) 3.665 (-) --- (1) 3.665

Cecropia francisci	(-)	(1)	0.924	(1)	0.924
Dalbergia variabilis	(-)	(1)	1.002	(1)	1.002
Ficus killipii	(1) 1.	.829 (-)		(1)	1.829
Ficus mathewsii	(-)	(1)	1.423	(1)	1.423
Hevea guianensis var. lutea	(2) 3.	.084 (-)		(2)	3.084
Inga sp4	(1) 1.	.336 (-)		(1)	1.336
Inga sp1	(-)	(1)	1.447	(1)	1.447
Jacaranda copaia	(-)	(1)	2.414	(1)	2.414
Laetia procera	(1) 1.	164 (-)		(1)	1.164
Licaria canella	(1) 0.	739 (-)	((1)	0.739
Marila laxiflora	(-)	(1)	2.618	(1)	2.618
Nectandra cuspidata	(-)	(1)	1.430	(1)	1.430
Ocotea glomerata	(1) 1.	533 (1)	1.319 ((2)	2.852
Senefeldera macrophylla	(1) 0.	924 (-)		(1)	0.924
Tapirira guianensis	(1) 2.	224 (-)	((1)	2.224
Enterolobium cyclocarpun	(1) 0.	704 (-)	((1)	0.704
CATEGORIA	4 70 -	99 cm DAP			
Brosimun sp	(1) 4.	310 (-)	(1)	4.310

El número entre paréntesis representa la cantidad de árboles.

CUADRO 14. Volumen y número de árboles con fuste 3 en el bosque de aptitud forestal UNAS - 1995.

ESPECIE	B L C	QUE	TOTAL
	I	II	
CATEGOR	RIA 10-39 c	m DAP	
Apeiba aspera	(2) 0.763	(1) 0.495	(3) 1.285
Apeiba membranacea	(4) 0.427	(1) 0.033	(5) 0.460
Aspidosperma marcgravianum	(-)	(2) 1.248	(2) 1.248
Annonocarpus amazonicus	(-)	(1) 0.048	(1) 0.048
Boccoa sp	(-)	(1) 0.022	(1) 0.022
Billia sp	(-)	(1) 0.119	(1) 0.119
Byrsonima arthropoda	(2) 0.080	(14)1.319	(16)1.399
Capirona decorticans	(2) 0.768	(2) 0.188	(4) 0.956
Casearia sylvestris	(-)	(8) 1.554	(8) 1.554
Cordia ucayaliensis	(2) 0.253	(-)	(2) 0.253
Cedrelinga catanaeformis	(2) 0.250	(1) 0.056	(3) 0.306
Clarisia racemosa	(1) 0.146	(1) 0.325	(2) 0.471
Cecropia latiloba	(2) 0.104	(3) 0.382	(5) 0.486
Cecropia engleriana	(2) 0.148	(1) 0.111	(3) 0.259
Cecropia francisci	(4) 0.675	(4) 0.454	(8) 1.129
Cecropia sciadophylla	(1) 0.317	(-)	(1) 0.317
Didymopanax morototoni	(1) 0.732	(2) 1.195	(3) 1.927
Dendropanax tessmannii	(2) 0.214	(1) 0.027	(3) 0.241
Dendrobangia sp	(1) 0.074	(-)	(1) 0.074
Ficus marhewsii	(-)	(1) 0.073	(1)0.073_
Guatteria guentheri	(-)	(2) 0.867	(2) 0.867
Guarea trichiolioides	(1) 0.032	(-)	(1) 0.032
Hevea guianensis var.lutea	(6) 0.900	(-)	(6) 0.900
Hevea guianensis	(7) 0.725	(-)	(7) 0.725

	Inga marginata	(1) 0.778	(3) 1.001	(4) 1.779
	Inga alba	(1) 0.040	(2) 0.259	(3) 0.299
	Inga thibaudiana	(-)	(2) 0.243	(2) 0.243
	Inga lallensis	(-)	(1) 0.175	(1) 0.175
	Inga capitata	(-)	(1) 0.401	(1) 0.401 ,
	Inga sp1	(1) 0.095	(-)	(1) 0.095
	Inga sp4	(1) 0.032	(1) 0.084	(2) 0.116
	tryanrhera tricornis	(1) 0.087	(-)	(1) 0.087
	Jacaranda copaia	(-)	(3) 1.264	(3) 1.264
	Laetia procera	(3) 0.156	(1) 0.125	(4) 0.281
**************************************	Mabea piriri	(1) 0.555	(1) 0.028	(2) 0.583
	Marila laxiflora	(1) 0.218	(-)	(1) 0.218
	Micropholis guyanensis	(-)	(1) 0.262	(1) 0.262
	Miconia holosericea	(3) 0.239	(3) 0.223	(6) 0.462
	Miconia aulocalyx	(2) 0.296	(2) 0.279	(4) 0.575
	Miconia amazonica	(-)	(2) 0.140	(2) 0.140
	Miconia sp1	(-)	(1) 0.445	(1) 0.445
	Nectandra turbacensis	(1) 0.043	(-)	(1) 0.043
	Nectandra cuspidata	(2)0.550_	(1) 0.176	(3) 0.726
	Ocotea glomerata	(1) 0.168	(1) 0.048	(2) 0.216
	Pseudolmedia laevis	(4) 0.861	(7) 0.669	(11)1.560
	Pouroma minor	(3) 0.336	(3) 0.343	(6) 0.679
	Psychotria pichisensis	(5) 0.444	(-)	(5) 0.444
	Perebea sp	(1) 0.040	(1) 0.074	(2) 0.114
	Piptademia sp	(1) 0.160	(-)	(1) 0.160
	Pouteria procera	(-)	(1) 0.753	(1) 0.753
	Protium sp1	(3) 0.168	(4) 0.338	(7) 0.506
	Protium sp2	(1) 0.285	(1) 0.099	(2) 0.384
	Parkia sp1	(1) 0.176	(-)	(1) 0.176
	Qualea implexa	(1) 0.178	(2) 0.291	(3) 0.469
	Senefeldera macrophylla	(21)1.516	(13)0.694	(34)2.210

Symphonia globuliffera (1) 0.099 (1) 0.032 (2) 0.131 Senna sylvestris (-) (1) 0.062 (1) 0.062 Sterculea apetala (2) 0.120 (1) 0.808 (3) 0.928
Stercules apetals (2) 0 120 (1) 0 808 (3) 0 928
(2) 0.120 (1) 0.000 (0) 0.020
Stylogyne aff.cauliflora (2)0.701 (-) (2) 0.701
-
Sclerolobium setiferum (-) (1) 0.214 (1) 0.214
Spondias sp (2) 0.549 (2) 0.126 (4) 0.675
Tapirira guianensis (2) 0.375 (2) 0.647 (4) 1.022
Tapirira peckoltiana (1)0.079_ (-) (1) 0.079
Theobroma Obovatum (1) 0.048 (1) 0.040 (2) 0.088
Virola pavonis (2) 0.158 (2) 0.418 (4) 0.576
Vitex sp (-) (1) 0.334 (1) 0.334
Enterolobium cyclocarpun (2) 0.283 (-) (2) 0.283
Rollina insignis (1) 0.132 (-) (1) 0.132
CATEGORIA 40 - 69 cm DAP
Guatteria guentheri (-) (1) 1.280 (1) 1.280
Inga alba (-) (1) 1.584 (1) 1.584
Nectandra cuspidata (-) (1) 1.841 (1) 1.841
Pouroma minor (-) (1) 1.056 (1) 1.056
Qualea implexa (-) (1) 1.225 (1) 1.225
Senefeldera macrophylla (-) (1) 1.100 (1) 1.100
Sterculea apetala (1) 0.704 (-) (1) 0.704
Tapirira guianensis (1) 1.214 (-) (1) 1.214
Virola pavonis (1) 1.220 (-) (1) 1.220
CATEGORIA > 100 cm DAP
Boccoa sp (-) (1) 0.022 (1) 0.022

El número entre paréntesis representa la cantidad de árboles.

CUADRO 15. Volumen y número de árboles con fuste 1 en el bosque de protección UNAS - 1995.

ESPECIE	NUMERO DE PLANTAS	VOLUMEN TOTAL
CATEGORIA 10	- 39 cm de DAP	
Apeiba membranacea	1	0.125
Acacia sp	3	0.424
Bathysa sp	3	0.736
Boccoa sp	2	0.326
Brosimun sp	1	0.763
Cecropia francisci	2	0.345
Cecropia engleriana	1	0.718
Cedrelinga catenaeformis	1	0.160
Calyptranthes sp	2	0.582
. Cordia ucayaliensis	2	0.443
Clarisia racemosa	10	2.074
Cousapoa sp	1	0.097
Cousapoa ovalifolia	2	0.730
Dendropanax tessmannii	4	0.480
Dalbergia variabilis	2	0.130
Didymopanax morototoni	2	0.474
Eschweilera ovalifolia	2	0.767
Ficus killipii	3	0.664
Ficus aff. paraensis	1	0.053
Ficus sp1	1	0.065
Ficus sp2	1	0.071
Guatteria guentheri	5	3.055
Guarea trichiolioides	1	0.190
Hevea guianensis var. lutea	3	1.366
Annonocarpus amazonicus	3	0.840
Inga alba	1	0.027

		• •		
	Inga sp1	1	0.063	
	Inga sp2	1	0.020	
	Inga sp3	1	0.673	
	Inga sp4	1	0.055	
	Iryanthera tricornis	1	0.040	
	Jacaranda copaia	2	0.323	•
	Jacaratia digitata	3	1.496	
	Licaria canella	1	0.204	
	Laetia procera	2	1.119	
•	Macrosamanea pedicellaris	2	0.513	
	Marila laxiflora	1	0.349	٠
	Micropholis guyanensis	2	0.480	٠
	Macrolobium acaciafolium	1	0.169	
	Miconia holosericea	1	0.601	
	Miconia bailloniana	2	0.454	
	Miconia spl	2	0.199	
	Nectandra turbacensis	2	0.294	
	Nectandra sp	4	1.074	
	Casearia sylvestris	1	0.099	
	Senefeldera macrophylla	21	2.267	•
	Hevea guianensis	13	1.410	
	Sclerolobium setiferum	2	0.522	
	Symphonia globulifera	4	1.592	
	Sloanea sp	2	0.179	
	Ocotea glomerata	5	0.719	•
	Ocotea amazonica	1	0.063	
	Ocotea sp	1	0.084	
•	Ormosia sp	1	0.603	
	Pseudolmedia laevis	12	4.648	•
	Pouroma minor	3	0.431	•
	Pouroma cecropiaefolia	3	1.462	
	A			

Psychotria pichisensis	1	0.370	
Pouteria procera	8	1.481	
Pouteria sp	2	0.170	•
Perebea sp	3	0.764	
Persea sp	2	0.783	
Piptademia sp	7	1.799	
Parkia spl	3	0.137	
Parkia sp2	1	0.087	
Protiumspl	13	1.983	
Protium sp2	1	0.718	
Qualea implexa	2	0.761	
Tapirira guianensis	4	1.479	
Tapirira peckoltiana	2	0.392	
Theobroma obovatum	4	0.846	
	•	1.549	
Virola pavonis	6	T + O.4.2	
-	- 69 cm DAP		-
-			÷
CATEGORIA 40	- 69 cm DAP		
CATEGORIA 40 Cecropia membranacea	- 69 cm DAP	1.490	
CATEGORIA 40 Cecropia membranacea Calyptranthes sp	- 69 cm DAP 1	1.490 1.423	
CATEGORIA 40 Cecropia membranacea Calyptranthes sp Clarisia racemosa	- 69 cm DAP 1 1 2	1.490 1.423 2.227	
CATEGORIA 40 Cecropia membranacea Calyptranthes sp Clarisia racemosa Dalbergia variabilis	- 69 cm DAP 1 1 2 1	1.490 1.423 2.227 1.924	
CATEGORIA 40 Cecropia membranacea Calyptranthes sp Clarisia racemosa Dalbergia variabilis Guatteria guentheri	- 69 cm DAP 1 1 2 1 1	1.490 1.423 2.227 1.924 1.017	
CATEGORIA 40 Cecropia membranacea Calyptranthes sp Clarisia racemosa Dalbergia variabilis Guatteria guentheri Hevea guianensis var. lutea	- 69 cm DAP 1 1 2 1 1 2	1.490 1.423 2.227 1.924 1.017 3.727	
CATEGORIA 40 Cecropia membranacea Calyptranthes sp Clarisia racemosa Dalbergia variabilis Guatteria guentheri Hevea guianensis var. lutea Macrosamanea pedicellaris	- 69 cm DAP 1 1 2 1 1 2 2 2	1.490 1.423 2.227 1.924 1.017 3.727 2.151	
CATEGORIA 40 Cecropia membranacea Calyptranthes sp Clarisia racemosa Dalbergia variabilis Guatteria guentheri Hevea guianensis var. lutea Macrosamanea pedicellaris Nectandra turbacensis	- 69 cm DAP 1 1 2 1 2 2 1 1 2 2	1.490 1.423 2.227 1.924 1.017 3.727 2.151 1.781	
CATEGORIA 40 Cecropia membranacea Calyptranthes sp Clarisia racemosa Dalbergia variabilis Guatteria guentheri Hevea guianensis var. lutea Macrosamanea pedicellaris Nectandra turbacensis Nectandra cuspidata	- 69 cm DAP 1 1 2 1 2 2 1 1 2	1.490 1.423 2.227 1.924 1.017 3.727 2.151 1.781 2.297	
CATEGORIA 40 Cecropia membranacea Calyptranthes sp Clarisia racemosa Dalbergia variabilis Guatteria guentheri Hevea guianensis var. lutea Macrosamanea pedicellaris Nectandra turbacensis Nectandra cuspidata Sloanea sp	- 69 cm DAP 1 1 2 1 2 2 1 1 1 2	1.490 1.423 2.227 1.924 1.017 3.727 2.151 1.781 2.297	
CATEGORIA 40 Cecropia membranacea Calyptranthes sp Clarisia racemosa Dalbergia variabilis Guatteria guentheri Hevea guianensis var. lutea Macrosamanea pedicellaris Nectandra turbacensis Nectandra cuspidata Sloanea sp Spondias sp	- 69 cm DAP 1 1 2 1 1 2 1 1 2 2 1 1 1 2	1.490 1.423 2.227 1.924 1.017 3.727 2.151 1.781 2.297 1.781 2.937	

Brosium lactesc			1		4.924	
Acacia sp			1		2.565	
	CATEGORIA	70 - 99	cm de	DAP		
Vitex sp	•		2		2.40	
Tapirira quiane	nsis		1 .		0.924	
protium sp2			1		3.252	

CUADRO 16. Volumen y número de árboles con fuste 2 en el bosque de protección UNAS - 1995.

ESPECIE	NUMERO DE PLANTAS	VOLUMEN TOTAL
CATEGORIA 10 -	39 cm de DAP	!
Apeiba membranacea	4	0.190
Apeiba aspera	3	0.499
Acacia sp	3	0.917
Boccoa sp	2	0.472
Billia sp	1	0.127
Cecropia francisci	2	0.304
Cecropia latiloba	3	0.959
Cecropia ficifolia	1	0.159
Cecropia engleriana	3	0.706
Cedrelinga catanaeformis	2	1.301
Calyptranthes sp	. 2	0.139
Clarisia racemosa	3	0.878
Cousapoa sp	1	0.040
Cousapoa ovalifolia	1	0.132
Dendropanax tessmannii	3	0.421
Dalbergia variabilis	2	0.485
Dendrobangia sp	3	0.268
Ficus killipii	3	0.528
Ficus sp1	1	0.047
Ficus sp2	1	0.176
Guatteria guentheri	3	1.240
Hevea guianensis var. lutea	4	0.737
Annonocarpus amazonicus	4	0.247
Henrietella sylvestris	1	0.040
Inga marginata	1	0.089
Inga capitata	1	0.119

	Inga sp2	1	0.084
	Inga sp3	1	0.293
	Inga sp4	2	0.139
	Iryanthera tricornis	2	0.257
	Licaria canella	1	0.778
	Laetia procera	1	0.108
	Macrosamanea pedicellaris	2	0.507
	Mabea piriri	1	0.032
	Marila laxiflora	1	0.446
•	Macrolobium acaciafolium	3	0.223
	Miconia theaezans	1	0.027
	Miconia holosericea	1	0.054
	Miconia longifolia	1	0.943
	Miconia aulocalyx	1	0.308
	Miconia sp2	1	0.143
	Miconia sp3	ĺ	0.140
	Nectandra cuspidata	3	0.375
	Nectandra sp	1	0.055
	Rollina insignis	1	0.693
	Casearia sylvestris	2	0.187
•	Senefeldera macrophylla	28	3.430
	Hevea guianensis	13	1.220
	Symphonia globulifera	3 .	1.414
	Senna sylvestris	1	0.483
	Sterculea apetala	1	0.207
	Sloanea sp	3	0.298
}	Spondias sp	1	0.784
!	Ocotea glomerata	5	1.066
(Ocotea amazonica	1	0.087
	Pseudolmedia laevis	11	3.990
]	Pouroma minor	2	0.260

•				

	Pouroma minor	2	0.260	
٠	Pouteria procera	1	0.139	
	Perebea sp	3	0.307	
	Piptademia sp	1	0.071	
	Enterolobium cyclocarpun	1	0.178	1
	Parkia sp2	1	0.446	
	Protium sp1	7	0.414	
	Protium sp3	1	0.194	
	Qualea implexa	1	0.011	
•	Tapirira guianensis	5	1.598	
	Tapirira peckoltiana	2	0.209	
	Theobroma obovatum	5	0.512	
	Virola pavonis	6	1.357	
	CATEGORIA 40	- 69 cm DAP		
	Dendrobangia sp	1	2.244	
	Guatteria guentheri	1	1.626	
	Inga alba	1	1.056	
	Nectandra turbacensis	1	1.390	
	Sloanea sp	1	1.374	
	Vitex sp	2	1.198	
	CATEGORIA 70 -	99 cm DAP		

CUADRO 17. Volumen y número de árboles con fuste 3 en el bosque de protección UNAS - 1995.

ESPECIE	NUMERO DE PLANTAS	VOLUMEN TOTAL
CATEGORIA 10 -	- 39 cm de DAP	
Apeiba membranacea	1.	0.040
Billia sp	1	0.043
Cecropia latiloba	1	0.521
Cecropia sciadophylla	1	0.443
Calyptranthes sp	1	0.040
Cordia ucayaliensis	1	0.204
Clarisia racemosa	3	0.563
Cousapoa ovalifolia	1	0.087
Capirina decorticans	1	0.125
Dendrobangia sp	3	0.326
Hevea guianensis var. lutea	3	0.264
Annonocarpus amazonicus	1	0.016
Henrietella sylvestris	2	0.317
Inga marginata	2	0.154
Inga alba	1	0.119
Inga sp1	1	0.143
Inga sp2	2	0.567
Inga sp3	1	0.213
Inga sp4	1	0.176
Jacaranda copaia	2	0.331
Licaria canella	2	0.350
Laetia procera	1	0.127
Macrosamanea pedicellaris	2	0.341
Micropholis guyanensis	1	0.065
Byrsonima arthropoda	29	3.734
Nectandra cuspidata	1	0.159

			•

	Nectandra sp	1	0.183
	Casearia sylvestris	2	0.053
	Senefeldera macrophylla	15	1.975
	Hevea guianensis	. 5	1.044
	Symphonia globulifera	3	1.208
	Sloanea sp	1	0.127
	Ocotea glomerata	3	0.459
	Pseudolmedia laevis	4	1.173
	Pouroma minor	3	0.373
•	Pouteria procera	2	0.646
	Perebea sp	1	0.038
	Piptademia sp	1	0.065
	Parkia sp2	1	0.053
	Protium sp1	3	0.526
	Protium sp2	1	0.033
	Tapirira guianensis	4	0.855
	Tapirira peckoltiana	1	0.154
	Theobroma obovatum .	3	0.369
	Virola pavonis	5	1.468
	CATEGORIA 40- 69 cm DAP		
	Cecropia latiloba	1	1.109

ч.

.