UNIVERSIDAD NACIONAL AGRARIA DE LA SELVA

FACULTAD DE RECURSOS NATURALES RENOVABLES

ESCUELA PROFESIONAL DE INGENIERÍA EN RECURSOS NATURALES RENOVABLES

ANÁLISIS DE LA DEFORESTACIÓN DE LOS AÑOS 2016 Y 2022 EN EL DISTRITO CASTILLO GRANDE, HUÁNUCO, PERÚ

Tesis

Para optar el título profesional de:

INGENIERO EN RECURSOS NATURALES RENOVABLES

PRESENTADO POR:

RAI FAJARDO GAMARRA

Tingo María – Perú

2023

ACTA DE SUSTENTACION DE TESIS Nº076-2023-FRNR-UNAS

Los que suscriben, Miembros del Jurado de Tesis, reunidos con fecha 25 de mayo del 2023, a horas 07:00 p.m. de la Escuela Profesional de Ingeniería en Recursos Naturales Renovables de la Facultad de Recursos Naturales Renovables para calificar la tesis titulada:

"ANÁLISIS DE LA DEFORESTACIÓN DE LOS AÑOS 2016 Y 2022 EN EL DISTRITO CASTILLO GRANDE, HUÁNUCO, PERÚ".

Presentado por el Bachiller: FAJARDO GAMARRA, RAI, después de haber escuchado la sustentación y las respuestas a las interrogantes formuladas por el Jurado, se declara APROBADO con el calificativo de "MUY BUENA".

En consecuencia, el sustentante queda apto para optar el Título Profesional de INGENIERO EN **RECURSOS NATURALES RENOVABLES** que será aprobado por el Consejo de Facultad, Tramitándolo al Consejo Universitario para el otorgamiento del Título Correspondiente.

Tingo María, 11 de setiembre de 2023

Ph. D. LUIS ALBÉRTO VALDIVIA ESPINOZA PRESIDENTE

Ing. M. Sc. PERCI P. COAGUILA RODRIGUEZ MIEMBRO

Ing. M. Sc. JUAN PABLO RENGIFO TRIGOZO MIEMBRO

Ing. M. Sc. RONALD HUGO PUERTA TUESTA ASESOR

UNIVERSIDAD NACIONAL AGRARIA DE LA SELVA DIRECCIÓN DE GESTIÓN DE INVESTIGACIÓN - DGI REPOSITORIO INSTITUCIONAL - UNAS Correo: repositorio@unas.edu.pe

"Año de la unidad, la paz y el desarrollo"

CERTIFICADO DE SIMILITUD T.I. Nº 295 - 2023 - CS-RIDUNAS

El Director de la Dirección de Gestión de Investigación de la Universidad Nacional Agraria de la Selva, quien suscribe,

CERTIFICA QUE:

El Trabajo de Investigación; aprobó el proceso de revisión a través del software TURNITIN, evidenciándose en el informe de originalidad un índice de similitud no mayor del 25% (Art. 3° - Resolución N° 466-2019-CU-R-UNAS).

Programa de Estudio:

Ingeniería en Recursos Naturales Renovables

Tipo de documento:

Tesis X Trabajo de investigación

TÍTULO	AUTOR	PORCENTAJE DE SIMILITUD
ANÁLISIS DE LA DEFORESTACIÓN DE LOS AÑOS 2016 Y 2022 EN EL DISTRITO CASTILLO	DS GAMARRA 18 %	
GRANDE, HUANUCO, PERÚ	×	Dieciocho

Tingo María, 30 de octubre de 2023

Dr. Tomas Menacho Mall OR

C.C. Archivo

UNIVERSIDAD NACIONAL AGRARIA DE LA SELVA FACULTAD DE RECURSOS NATURALES RENOVABLES

ESCUELA PROFESIONAL DE INGENIERÍA EN RECURSOS NATURALES RENOVABLES

ANÁLISIS DE LA DEFORESTACIÓN DE LOS AÑOS 2016 Y 2022 EN EL DISTRITO CASTILLO GRANDE, HUÁNUCO, PERÚ

Autor	: Rai Fajardo Gamarra		
Asesor (es)	: MSc. Ronald Hugo Puerta Tuesta		
Eje temático	: Monitoreo de la deforestación y adaptación al cambio climático		
Programa de investigación	: Valorización de la biodiversidad, recursos naturales y biotecnología		
Línea de investigación	: Manejo del paisaje, gobernanza y adaptación al cambio climático		
Eje temático	: Monitoreo de la deforestación y adaptación al cambio climático		
Duración del trabajo	: 6 meses		
Financiamiento	: S/ 1 130,14		

Tingo María – Perú

DEDICATORIA

A Dios quien siempre me sostiene en su gracia y misericordia.

A Esthefany, mi enamorada que me ayudó en todo y me sigue bendiciendo cada día con su vida, y sobre todo edificando en cada área de mí, retándome y apoyándome desde el primer día que nos conocimos.

A los ingenieros Ronald Puerta y Frits Palomino, docentes que me motivaron y ayudaron a descubrir y amar esta maravillosa carrera y la investigación; siempre aprendí y seguiré aprendiendo algo nuevo con sus personas.

A Edwin Flores y Kadu Alva por su amistad y apoyo académico y moral en todo este tiempo que nos conocemos. A mamá Norma y papá Miguel por todo su apoyo en todas las áreas de mi vida y por ser los mejores padres del mundo.

A mis profesores de la Facultad de Recursos Naturales Renovables; en especial a la Escuela Profesional de Recursos Naturales Renovables, por impartir sus conocimientos, dando formación con capacidad técnica y profesional

A los ingenieros Jimmy Pinedo y Nino Bravo por brindarme y compartirme sus conocimientos en el mundo del SIG y Teledetección, sin sus enseñanzas no hubiera sido posible realizar esta investigación.

ÍNDICE

Página

I.	INTRODUCCIÓN1
II.	REVISIÓN DE LITERATURA
	2.1. Marco teórico
	2.1.1. Teledetección
	2.1.2. Análisis multitemporal
	2.1.3. Google Earth Engine (GEE)
	2.1.4. Planet
	2.1.5. Índice de Kappa5
	2.1.6. Clasificación de imágenes satelitales6
	2.1.7. Algoritmos de clasificación supervisada6
	2.1.8. Clasificación supervisada7
	2.1.9. Sentinel 27
	2.1.10. Verificación de los mapas de deforestación9
	2.1.11. Deforestación10
	2.1.12. Bosque
	2.2. Estado del arte11
	2.2.1. Estado del arte internacional11
	2.2.2. Estado del arte nacional15
III.	MATERIALES Y MÉTODOS21
	3.1. Lugar de ejecución
	3.1.1. Ubicación geográfica21
	3.1.2. Ubicación política
	3.1.3. Características climáticas
	3.1.4. Zona de vida22
	3.2. Material y métodos
	3.2.1. Materiales y equipos
	3.2.2. Metodología
	3.2.3. Tipo de investigación
	3.2.4. Técnicas e instrumentos de recolección de datos
IV.	RESULTADOS Y DISCUSIÓN

4.1. Exactitud temática de la clasificación de los mapas de deforestación del	
distrito Castillo Grande, Huánuco, Perú de los años 2016 y 2022	27
4.2. Superficie deforestada de los años 2016 y 2022 en el distrito Castillo	
Grande, Huánuco,Perú	29
4.3. Tasa de deforestación de los años 2016 y 2022 en el distrito Castillo	
Grande, Huánuco, Perú	33
V. CONCLUSIONES	34
VI. PROPUESTAS A FUTURO	35
VII. REFERENCIAS	36
ANEXO	45

ÍNDICE DE TABLAS

Tabla	Página
1.	Descripción de las bandas de PlanetScope5
2.	Valores de Índice de Kappa6
3.	Descripción de las bandas de Sentinel 28
4.	Categorías para clasificación y reclasificación
5.	Variable de estudio con sus dimensiones e indicadores25
6.	Matriz de consistencia
7.	Matriz de confusión
8.	Puntos de validación para el algoritmo Support Vector Machine del año 2016 46
9.	Puntos de validación para el algoritmo Decision Tree del año 2016
10.	Puntos de validación para el algoritmo Random Forest del año 2016
11.	Puntos de validación para el algoritmo Support Vector Machine del año 202256
12.	Puntos de validación para el algoritmo Decision Tree del año 2022
13.	Puntos de validación para el algoritmo Random Forest del año 2022

ÍNDICE DE FIGURAS

Figur	ra Página
1.	Niveles de procesamiento de Sentinel 29
2.	Mapa de ubicación política del área de estudio21
3.	Metodología realizada la clasificación y validación24
4.	Valores de índice de Kappa para cada algoritmo de clasificación supervisada27
5.	Valores de exactitud global para cada algoritmo de clasificación supervisada28
6.	Área en hectáreas de las categorías clasificadas de los años 2016 y 202229
7.	Mapa de deforestación del año 2016
8.	Mapa de deforestación al año 2022
9.	Validación en campo de categoría deforestado67
10.	Validación en campo67
11.	GPS, mapa y formato para la validación en campo68
12.	Validación con imágenes satelitales Planet68
13.	Validación con imágenes satelitales Planet69
14.	Validación con imágenes satelitales Planet69
15.	Clasificación en Google Earth Engine70
16.	Resultados en software SPSS
17.	Manejo de la tabla de atributos en ArcGis 10.571

RESUMEN

La presente investigación se llevó a cabo en el distrito de Castillo Grande, provincia de Leoncio Prado, región de Huánuco, Perú. El objetivo principal fue evaluar la deforestación ocurrida de los años 2016 y 2022, utilizando imágenes Sentinel 2 y tres algoritmos de clasificación supervisada: Support Vector Machines (SVM), Decision Trees (DT) y Random Forest (RF).

Se llevó a cabo una comparación de la precisión temática de los mapas de deforestación generados con cada algoritmo, siendo Random Forest el que presentó los mejores resultados con valores de índice Kappa de 0,85 y 0,90 para los años 2016 y 2022, respectivamente. Esto indica que Random Forest fue el más eficiente en la clasificación de áreas deforestadas.

Se estimó que la superficie deforestada en el año 2016 fue de 3 284,59 hectáreas, mientras que en el año 2022 esta cifra aumentó a 5 440,23 hectáreas. La tasa de deforestación anual se calculó en 368,63 hectáreas por año (ha/año).

En conclusión, el estudio demostró que el algoritmo Random Forest es altamente efectivo para estimar la superficie deforestada en el distrito de Castillo Grande, superando más del 50% del área de estudio. Los resultados obtenidos resaltan la importancia de monitorear y abordar el problema de la deforestación en esta región, con el fin de implementar estrategias de conservación y manejo sostenible de los recursos forestales.

Palabras clave: Deforestación, clasificación supervisada, índice de Kappa, Sentinel 2.

ABSTRACT

The present investigation was carried out in the district of Castillo Grande, province of Leoncio Prado, region of Huánuco, Peru. The main objective was to evaluate the deforestation that occurred between 2016 and 2022, using Sentinel 2 images and three supervised classification algorithms: Support Vector Machines (SVM), Decision Trees (DT) and Random Forest (RF).

The thematic accuracy of the deforestation maps generated with each algorithm was compared, with the Random Forest algorithm being the one that yielded the best results with Kappa index values of 0,85 and 0,90 for the years 2016 and 2022, respectively. This suggests that Random Forest was the most efficient in classifying deforested areas. It was estimated that the deforested area in 2016 was 3 284,59 hectares, while in 2022 this figure increased to 5 440,23 hectares. The annual deforestation rate was calculated at 368,63 hectares per year (ha/year).

In conclusion, the study showed that the Random Forest algorithm is highly effective in estimating the deforested area in the Castillo Grande district, exceeding more than 50% of the study area. The results obtained highlight the importance of monitoring and addressing the problem of deforestation in this region, in order to implement conservation strategies and sustainable management of forest resources.

Keywords: Deforestation, supervised classification, Kappa index, Sentinel 2.

I. INTRODUCCIÓN

Desde 1990 al 2020 se ha perdido a nivel mundial aproximadamente 178 millones de hectáreas de bosque (Organización de las Naciones Unidas para la Alimentación y la Agricultura [FAO], 2020). El Perú no es ajeno a esta realidad, dentro del territorio nacional la deforestación avanza a una velocidad de 160 000 hectáreas/año (Ministerio del Ambiente [MINAM], s.f.). Esta amenaza no es algo nuevo en la región Huánuco, donde los bosques amazónicos fueron reemplazados drásticamente por cultivos agrícolas y ganadería.

En este contexto, la presente investigación se plantea la siguiente pregunta: ¿Cuánto varía el área deforestada durante los años 2016 y 2022 en el distrito Castillo Grande, Huánuco, Perú?. Asimismo, se plantea la siguiente hipótesis: La deforestación al 2022 abarca más del 50% de la superficie total del distrito de Castillo Grande.

Es así, que surgen tecnologías para ubicar, delimitar y cuantificar la cobertura boscosa a nivel mundial, utilizando métodos sofisticados y de acceso libre para obtener resultados más exactos y sin costo alguno. En el año 2010, surgió Google Earth Engine, una plataforma basada en la nube diseñada para el análisis geoespacial a nivel global. Esta plataforma aprovecha las enormes capacidades computacionales de Google y se ha convertido en una herramienta crucial para abordar diversas problemáticas ambientales, tales como la deforestación y los patrones de uso del suelo (Puerta et al., 2021). La introducción de Google Earth Engine ha marcado un hito significativo en la capacidad de abordar estos desafíos ambientales a una escala planetaria.

Si bien en los últimos años se ha ejecutado investigaciones sobre la pérdida de bosques en la región Huánuco (Chahua, 2019), es muy escasa la información sobre el monitoreo sistemático y continuo sobre los bosques a nivel distrital, por lo que urge la necesidad de generar información espacial y precisa sobre la pérdida de bosques, cuantificación de cobertura boscosa, usos de suelo, etc.; que ayude a las autoridades en el sector forestal y ambiental en la toma de decisiones.

Por lo tanto, se plantea los siguientes objetivos:

Objetivo general

 Analizar la deforestación de los años 2016 y 2022 en el distrito Castillo Grande, Huánuco, Perú.

Objetivos específicos

Evaluar la exactitud temática de la clasificación en los mapas de deforestación del distrito Castillo Grande, Huánuco, Perú de los años 2016 y 2022 con los algoritmos de Support Vector Machine (SVM), Decision Tree (DT) y Random Forest (RF) en imágenes Sentinel 2.

Estimar la superficie deforestada de los años 2016 y 2022 en el distrito Castillo
 Grande, Huánuco, Perú.

Cuantificar la tasa de deforestación de los años 2016 y 2022 en el distrito Castillo
 Grande, Huánuco, Perú.

II. REVISIÓN DE LITERATURA

2.1. Marco teórico

2.1.1. Teledetección

Chuvieco y Salas (1996) describen la teledetección como una técnica que facilita la captura de imágenes satelitales de la superficie terrestre utilizando sensores instalados en plataformas espaciales. Este proceso se logra mediante la interacción energética, que puede ser la energía solar emitida (sensor pasivo) o un haz de energía artificial (sensor activo). En la teledetección, se integran tres componentes fundamentales: el sensor, el objeto observado y el flujo de energía (Padilla et al., 2015). Un atributo significativo de los sistemas de teledetección, especialmente los sensores satelitales, radica en su capacidad para proporcionar cobertura periódica y consistente en las mismas bandas espectrales, bajo condiciones de observación similares. Esta uniformidad es crucial para investigaciones de detección de cambios a escalas globales y regionales (Singh, 1989; Chuvieco, 2019; Arai et al., 2011; Baisch et al., 2012). La teledetección, al garantizar esta coherencia en la información recopilada, se ha convertido en una herramienta esencial para evaluar transformaciones en el entorno terrestre en distintas partes del mundo.

2.1.2. Análisis multitemporal

El análisis multitemporal se presenta como una técnica analítica esencial que permite extraer conclusiones específicas sobre las transformaciones espaciales en una región determinada. Esto implica la necesidad de convertir las series de datos procedentes de diferentes fechas en un conjunto único y coherente de información. Colditz (2007) define este análisis como una sucesión ordenada de observaciones realizadas a lo largo de un período de tiempo. Para llevar a cabo un análisis de este tipo, es crucial que el sensor utilizado tenga la capacidad de cubrir repetidamente la misma área en distintos momentos, lo que implica una alta resolución temporal para detectar cambios en la cobertura vegetal. La generación de una serie de tiempo precisa se erige como uno de los procesos más críticos al trabajar con datos provenientes de sensores remotos. Diversas fuentes de error, como las nubes, gases y aerosoles atmosféricos, requieren un análisis exhaustivo antes o durante la creación de estas series temporales. Estos elementos, especialmente cuando se emplean índices de vegetación como el EVI, NDVI y FPAR, deben ser eliminados o interpolados de manera precisa para garantizar la fiabilidad de los resultados. La atención cuidadosa a estas variables y la aplicación de técnicas precisas son indispensables para obtener análisis multitemporales precisos y significativos.

2.1.3. Google Earth Engine (GEE)

La información satelital sea de cualquier escala, es recopilada por distintos sensores que, de diferentes satélites, entre los más populares por su distribución gratuita se tiene Sentinel, Landsat y MODIS (Perilla y Mas, 2020). Los diferentes satélites y sus sensores al recolectar información de diferente naturaleza y resoluciones hacen que ocupen bastante espacio de almacenamiento (Yang et al., 2016). Ante este problema Google Earth Engine aparece en el año 2010 permitiendo ahora que el usuario pueda realizar operaciones y análisis geoespaciales avanzados con grandes cantidades de datos pero sin almacenarla en la computadora del usuario, todo se realiza desde la plataforma (Perilla y Mas, 2020) , y a esto se agrega el hecho de que puede ser ligado a distintos satélites, permitiendo al usuario tener más facilidad en el procesamiento de datos geoespaciales con resultados rápidos (Gorelick et al., 2017).

La plataforma de Google Earth Engine está compuesta de cuatro elementos principales: La infraestructura de Google, datasets, Application Program Interface (API) y el Code Editor (Perilla y Mas, 2020). Para trabajar con esta plataforma es necesario saber el lenguaje de programación Java, pero se puede descargar para programar en Python, pero podría incurrir este último lenguaje de programación en cobros de uso y carecimiento de apoyo y ayudas. Ya desde su creación se usó para distintas aplicaciones la plataforma al permitir al usuario muchas posibilidades, desde mapas de alta resolución (Pekel et al., 2016) como el cambio global de bosque (Hansen et al., 2013). Pero la plataforma no es perfecta, siempre está en constante desarrollo, y necesariamente se requerirá el uso de una buena conexión a internet para poder tener acceso a la plataforma, se permitirá descargar las imágenes hasta un límite en un el Google Drive del usuario, pero este en su versión gratuita solo cuenta con 15 gigabytes de almacenamiento, como toda plataforma, tiene sus ventajas y desventajas (Perilla y Mas, 2020).

2.1.4. Planet

La empresa Planet consta con una constelación de satélites esto dado a sus múltiples lanzamientos de satélites individuales. Siendo de esta forma capaz de obtener imágenes a diario de todo el planeta debido a que la constelación de múltiples satélites rodea toda la tierra (López, 2018). Están disponibles gratuitamente las imágenes de sus satélites PlanetScope desde diciembre del año 2015 hasta la actualidad variando en la resolución temporal a partir del año 2020 (Planet, 2021).

№ de Banda	Descripción de la banda	Longitud de onda (µm)	Resolución Espacial (m)
1	Azul	0,445 - 0,515	4,7 m
2	Verde	0,500 - 0,590	4,7 m
3	Rojo	0,590 - 0,670	4,7 m
4	NIR	0,780 - 0,860	4,7 m

Tabla 1. Información de satélite PlanetScope

Fuente: López (2018).

2.1.5. Índice de Kappa

El índice de Kappa representa la medida de la concordancia inter-observador y puede ser calculado en tablas de cualquier tamaño, siempre y cuando se comparen las observaciones de dos personas. Cuando se acerca a +1, indica un alto grado de concordancia entre las observaciones, mientras que si se aproxima a -1, denota una discordancia significativa entre las observaciones inter-observador. Un valor de k = 0; señala que la concordancia observada es exactamente la que se esperaría debido puramente al azar (Cerda y Villarroel, 2008). La interpretación de este índice es esencial para evaluar la fiabilidad de las observaciones realizadas por distintos observadores, y juega un papel fundamental en la validación y confiabilidad de los resultados obtenidos en investigaciones científicas y análisis comparativos.

El índice de Kappa se define como:

$$K = \frac{Po - Pe}{1 - Pe} \left(1\right)$$

Donde:

Po: Proporción de acuerdos observados

Pe: la proporción de acuerdos esperados (Abraira, 2001)

La máxima concordancia posible corresponde a k = 1. El valor k = 0 se obtiene cuando la concordancia observada es precisamente la que se espera a causa exclusivamente del azar. Si la concordancia es mayor que la esperada simplemente a causa del azar, k > 0, mientras que, si es menor, k < 0, el mínimo valor de k depende de las distribuciones marginales (De Ullibarri y Pita, 1999).

Valor de K	Fuerza de la concordancia	
0,00	Pobre	
0,01-0,20	Leve	
0,21-0,40	Aceptable	
0,41-0,60	Moderada	
0,61-0,80	Considerable	
0,81-1,00	Casi Perfecta	

Tabla 2. Valores de Índice de Kappa.

Fuente: Ministerio del Ambiente [MINAM] (2014b)

2.1.6. Clasificación de imágenes satelitales

La clasificación de imágenes satelitales se ha convertido en una herramienta fundamental para la planificación y gestión del territorio. Entre los métodos más conocidos y ampliamente utilizados se encuentran la clasificación supervisada y no supervisada, ambas basadas en el análisis de los píxeles de las imágenes. Sin embargo, en tiempos recientes, el análisis de imágenes basado en objetos ha experimentado un avance significativo, especialmente en la mejora de algoritmos y software. Este enfoque implica la identificación de objetos, es decir, grupos de píxeles contiguos que comparten información y comportamientos similares. Los resultados de este tipo de clasificación están directamente relacionados con la resolución de las imágenes utilizadas (Perea et al., 2009). Este enfoque basado en objetos representa un paso adelante en la precisión de la clasificación de imágenes satelitales y ofrece nuevas oportunidades para la interpretación detallada y precisa de un área de trabajo.

2.1.7. Algoritmos de clasificación supervisada

Los algoritmos de Machine Learning permiten clasificar con mayor precisión que con clasificadores paramétricos tradicionales. Hoy en día son muy utilizados para hacer mapeo de uso de la cobertura terrestre y se presentan muchas investigaciones haciendo uso de algoritmos de clasificación, existen distintos algoritmos de clasificación supervisada como Máxima Verosimilitud, Redes Neuronales Artificiales, Support Vector Machines (SVM), Random Forest (RF) y Decision Tree (DT). Estos hoy en día son accesibles en softwares libre como RStudio, Google Earth Engine y QGis (Tarazona, 2019). Entre los mejores y con mejor exactitud se encuentran los algoritmos Support Vector Machine (SVM), Random Forest y Decision Tree (Murillo, 2018; Granja, 2020), pero también hay estudios donde otros algoritmos indicaron mayor precisión como el K Nearest – Neighbor y Máxima Verosimilitud, pero en estos influye bastante las imágenes utilizadas y su calidad en el sentido de si presentan nubosidad y sombra de nubes (Méndez, 2020; Ávila et al., 2020).

2.1.8. Clasificación supervisada

En el método de clasificación supervisada, un operador desempeña un papel crucial al definir las características espectrales de las clases. Esto se logra mediante la identificación de áreas de muestreo, conocidas como áreas de entrenamiento, y exige que el operador tenga un conocimiento profundo del área de interés (Chuvieco, 2019). Según Rodríguez et al. (2015), en este método, cada estrato se considera como un campo de prueba, lo que implica que la firma espectral en unidades de energía corresponde a la verificación realizada en el terreno. En la clasificación supervisada, se refleja la decisión previa de seleccionar clases espectrales para los patrones de cobertura del suelo que un analista puede identificar. Es esencial destacar que el mapeo de las clases mediante este método depende completamente del conocimiento previo del analista sobre la cobertura del suelo que se va a identificar fotoidentificando. Este enfoque pone en relieve la importancia del analista en la interpretación precisa de las características espectrales para lograr una clasificación satisfactoria y detallada de las imágenes satelitales.

2.1.9. Sentinel 2

Según Olcoz (2016), Sentinel-2 se basa en una constelación compuesta por dos satélites idénticos: Sentinel-2A, lanzado en junio de 2015, y Sentinel-2B. Estos dos satélites, aunque lanzados por separado, están en la misma órbita con una separación de 180° entre ellos. Cada cinco días, combinando los sobrevuelos de ambos satélites, se logra cubrir toda la superficie terrestre. Cada uno de los satélites Sentinel-2 está equipado con una cámara multiespectral de alta resolución que consta de 13 bandas espectrales. Estas bandas proporcionan una nueva perspectiva sobre las superficies terrestres emergidas y la vegetación. La combinación de alta resolución y capacidades espectrales avanzadas, junto con un campo de visión de 290 km de ancho y sobrevuelos frecuentes, permite obtener vistas sin precedentes de la Tierra. La información recopilada por estos satélites es fundamental para mejorar las prácticas agrícolas, monitorear los bosques del planeta, detectar la contaminación en lagos y áreas costeras, y crear mapas de desastres naturales. Estas misiones Sentinel forman parte del núcleo de la red de vigilancia medioambiental Copernicus de la Unión Europea. Esta iniciativa emblemática proporciona información operativa sobre las superficies terrestres, los océanos y la atmósfera de nuestro planeta.

Pondog Sontinol 2	Longitud de Onda Central	Resolución
Bandas Sentinei-2	(µm)	espacial(m)
Banda 1 – Costero / aerosol	0,443	60
Banda 2 - Azul	0,49	10
Banda 3 - Verde	0,56	10
Banda 4 - Rojo	0,665	10
Banda 5 - Visible e Infrarrojo Cercano (VNIR)	0,705	20
Banda 6 - Visible e Infrarrojo Cercano (VNIR)	0,74	20
Banda 7 - Visible e Infrarrojo Cercano (VNIR)	0,783	20
Banda 8 - Visible e Infrarrojo Cercano (VNIR)	0,842	10
Banda 8A - Visible e Infrarrojo Cercano (VNIR)	0.865	20
Banda 9 - Vapor de Agua	0,945	60
Banda 10 - Cirrus	1,375	60
Banda 11 - Onda Corta Infrarroja (SWIR)	1,61	20
Banda 12 - Onda Corta Infrarroja (SWIR)	2,19	20

Tabla 3. Información de bandas Sentinel 2.

Fuente: Alonso (2019)

Se tiene disponibles dos niveles en el satélite Sentinel 2, ambos con correcciones correspondientes (**Figura 1**), el nivel 1C con corrección radiométrica y geométrica, reflectancia al tope de la atmósfera (TOA). También está el nivel 2A con las mismas correcciones del nivel 1C, pero este cuenta con corrección de la parte superior de la atmósfera (BOA) en lugar del tope de la atmósfera (TOA) (Phiri et al., 2020)

Figura 1. Niveles de procesamiento de Sentinel 2. Fuente: Phiri et al. (2020)

Existen investigaciones donde se utilizan tanto nivel 1C como nivel 2A para cumplir con objetivos deseados en aplicación de la teledetección donde en ambos presentan sus limitaciones, pero eso no quiere decir que uno sea mejor que otro, sino que en ambos se obtienen buenos resultados (Estévez et al., 2020; Ni et al., 2021; Brinkhoff et al., 2022; Wolters et al., 2021).

2.1.10. Verificación de los mapas de deforestación

Al culminar la interpretación digital de imágenes satelitales, se lleva a cabo un proceso crítico de verificación para validar la calidad y precisión del método y del producto obtenido. Según Chuvieco (2019), esta verificación se considera el último paso en la clasificación digital, la interpretación visual de imágenes, la detección de cambios, entre otros procesos. La verificación implica la aplicación de técnicas de muestreo que permiten estimar con precisión y eficiencia los posibles errores en los resultados. Para lograr esto, se seleccionan muestras representativas de las condiciones del terreno para establecer una relación entre la realidad y los resultados obtenidos. El proceso de verificación puede implicar salidas a campo en áreas específicas con la ayuda de dispositivos GPS para validar los datos. Además, en los últimos años, el uso de rasters de alta resolución, ha sido común en esta fase de la metodología. También, se han empezado a utilizar imágenes capturadas por drones para validar los resultados (Ramírez et al., 2020; Puerta y Fajardo, 2022; Anaya y Chuvieco, 2012). Estas diversas técnicas de verificación garantizan la calidad y confiabilidad de los datos clasificados y son esenciales para la precisión de los estudios basados en imágenes satelitales.

2.1.11. Deforestación

La deforestación, según la FAO (2020), se define como la transformación del bosque en otros usos de la tierra o la reducción de la cubierta de la copa por debajo del umbral mínimo del 10%. Además, la FAO (2016) también la identifica como uno de los principales generadores de gases de efecto invernadero. En la actualidad, la deforestación y degradación de los bosques contribuyen significativamente a las emisiones de gases de efecto invernadero, representando entre el 10% y el 25% del total. Este fenómeno no solo impacta el clima global sino también la biodiversidad, facilitando la invasión de especies exóticas y aumentando la escorrentía superficial (Fontúrbel, 2007; Gómez et al., 2013; Grinand et al., 2013; Butt et al., 2015). En el contexto peruano, el país se ubica en el décimo lugar a nivel mundial en términos de densidad forestal. Más de la mitad del territorio peruano, alrededor de 673,109 kilómetros cuadrados, está cubierto por bosques, siendo superado solo por Brasil en términos de extensión de bosque tropical amazónico. Sin embargo, la Amazonia peruana está en grave peligro debido a la deforestación, siendo la agricultura a menor escala, la minería comercial y la construcción de infraestructuras las principales causas. La tala ilegal es un factor central en la degradación de los bosques peruanos, con aproximadamente 2 849 km² talados ilegalmente cada año, lo que representa casi el 80% de las pérdidas forestales anuales (Marapi, 2013). La alta demanda de tierras, más que de madera, impulsa este proceso, incluso en áreas con baja fertilidad y pendientes pronunciadas y altos niveles de precipitación. Huánuco, un departamento en Perú, no está exento de este problema. Las limitadas oportunidades económicas contribuyen a la migración hacia las zonas selváticas para la extracción forestal y actividades agropecuarias. Entre 2001 y 2018, Huánuco experimentó una pérdida de bosque significativa, calculada en 318,924 hectáreas, situándolo como uno de los departamentos con mayores pérdidas forestales junto con Ucayali (MINAM, 2019). Esta situación subraya la urgencia de implementar medidas efectivas para conservar y gestionar sosteniblemente los recursos forestales en esta región y en todo el país.

2.1.12. Bosque

Es definido como bosque, aquellas tierras que presentan una extensión mayor de 0,5 hectáreas conformadas por árboles con una altura que es superior a los 5 metros y con la cubierta de la copa superando el 10% (FAO, 2012); el MINAM (2014a) comparte la misma definición, pero considera bosque cuando cumple lo anterior mencionado solo agrega que es cuando la altura supera a los 2 metros.

2.2. Estado del arte

2.2.1. Internacional

En la tesis presentada por Suquilandia (2020), el objetivo principal fue estimar el nivel de severidad ocasionado por un incendio forestal ocurrido el 24 de octubre de 2018 en una cobertura forestal de pino en la granja de la Universidad de Cuenca, sector Irquis (Azuay). Se emplearon técnicas de teledetección, específicamente imágenes Sentinel 2, con el fin de facilitar la toma de decisiones posterior al incendio. La metodología se basó en una investigación cuantitativa de carácter descriptivo, utilizando un diseño no experimental longitudinal de método deductivo. La población de estudio fue la granja Irquis, ubicada en la provincia de Azuay en Ecuador. Se aplicó la observación no experimental como técnica de recolección de datos, utilizando una ficha de observación como instrumento de recolección. En el análisis, se utilizaron los algoritmos de clasificación de Máxima Verosimilitud y Support Vector Machine. Como resultado, se determinó que un total de 12,67 hectáreas de área forestal se vieron afectadas después del incendio. En cuanto al índice de Kappa, tanto en la fase pre-incendio como post-incendio, el algoritmo Support Vector Machine mostró un rendimiento significativamente superior, con valores de 0,71 y 0,77, superando los valores de 0,64 y 0,67 respectivamente obtenidos por el algoritmo de Máxima Verosimilitud. Además, en términos de precisión, el algoritmo Support Vector Machine también demostró un mejor desempeño en comparación con el método de Máxima Verosimilitud. Estos resultados resaltan la eficacia del enfoque basado en Support Vector Machine para la clasificación precisa de las áreas afectadas por incendios forestales, proporcionando información valiosa para la toma de decisiones posteriores al evento.

El artículo científico presentado por Cuadra et al. (2020) tiene como objetivo analizar el proceso de deforestación en el noroeste de la provincia del Chaco, desde 1986 hasta 2018, utilizando imágenes de los satélites Landsat 5 y Landsat 8 correspondientes a los años respectivos, a través de la plataforma Google Earth Engine. La metodología empleada consistió en una investigación de tipo cuantitativa de nivel descriptivo, utilizando un diseño no experimental longitudinal de método deductivo. La población de estudio fue el noroeste de la provincia del Chaco. En términos de recolección de datos, se utilizó la observación no experimental como técnica y una ficha de observación como instrumento. Los resultados obtenidos revelan que durante un período de 32 años, el área evaluada experimentó una pérdida de cobertura forestal que alcanzó las 539,321 hectáreas. Estos hallazgos proporcionan una perspectiva crítica sobre el impacto de la deforestación en esta región específica, subrayando la urgencia de abordar y mitigar los efectos adversos de la pérdida continua de bosques en el

noroeste de la provincia del Chaco. La clasificación fue con el algoritmo Decision Trees, donde fue sometida a un proceso de validación donde fue con la metodología de Olofsson, en la cual para el año 1986 se obtuvo una precisión global de 0,97 y para el año 2018 el valor de 0,95.

En el artículo científico de Li y Wang (2020) se presenta como objetivo clasificar los tipos de bosques en una gran escala regional: el área de Shangri-La por clasificación jerárquica. Tipo cualitativa, nivel descriptivo con diseño no experimental, la población fue Shangri-La, dentro de la provincia de Yunnan, China. Como técnica de recolección de datos se usó la observación no experimental longitudinal de método deductivo. Como instrumento de medición se utilizó dos fichas de observación. Los resultados presentaron que en la clasificación forestal y no forestal usando muestras de validación el valor indicó ser superior al 98% para todos los escenarios de clasificación, por lo tanto, los resultados indican que las imágenes sin nubes compuestas durante los años evaluados (2016 al 2018) pueden identificar con precisión los bosques en Google Earth Engine con el algoritmo Random Forest, pero para clasificar el resto de los tipos de bosque su valor de validación disminuyó considerablemente en algunas categorías. Como conclusiones del artículo científico indica que se es difícil obtener imágenes sin nubes incluso en GEE, pero existe un algoritmo de la plataforma permite eliminar las nubes y combinar esas áreas con un área sin nubes durante el tiempo requerido.

En la investigación de Luo et al. (2021) tiene por objetivo caracterizar el cambio actualizado en el uso de tierra y la cobertura terrestre en la nueva área de Xiong'an entre los años 2017 al 2020 usando imágenes multitemporales de Sentinel-2 en Google Earth Engine. Presenta una investigación de tipo cuantitativa de nivel descriptivo con diseño no experimental longitudinal de método deductivo, la población fue Xiong'an, China. Se usó como la observación no experimental como técnica de recolección de datos y dos fichas de observación como instrumento de medición. Los resultados indicaron que el algoritmo Random Forest presenta una poderosa capacidad de clasificación obteniendo valores de OA y Kappa superiores al 95% indicando un alto rendimiento y preciso, por la parte de la clasificación, del 2017 al 2018 en la agricultura de secano se pasó de un 58 a 53% del área total de estudio, los campos de arroz se mantuvieron en un 2%, en las áreas impermeables (edificios, infraestructura vial) de un 19 a 18%, en los cuerpos de agua de un 4 a 3%, los bosques se mantuvieron en un 4%, los humedales aumentaron de un 9 a un 10%, otros tipos de cobertura aumentaron también de un 4 a 10%. Se concluyó los tipos de uso de la tierra y las áreas de la Nueva Área de Xiong'an en las dimensiones temporal y espacial han cambiado significativamente como en el caso de las áreas impermeables por la reubicación de viviendas y el desmantelamiento de aldeas.

En el artículo científico de Piao et al. (2021) se tuvo como objetivo analizar el cambio de uso de la tierra y cobertura terrestre utilizando datos de serie de tiempo y Random Forest en Corea del Norte. La investigación fue de tipo cuantitativa, nivel descriptivo con un diseño no experimental longitudinal de método deductivo. La población fue Corea del Norte, usando la observación no experimental como técnica de recolección de datos y ficha de observación como instrumento de medición. Los resultados indicaron que del 2001 al 2018 en cuanto a las categorías hubo cambios, en áreas de construcción aumentó de un 0,789 a 1,083% del territorio, en cultivos de un 30,832 a 29,237%, en bosque de un 61,917 a 63,520%, en pastizales de un 5,126 a 4,761% y en cuerpos de agua un ligero aumento de 1,336 a 1,399%. Se concluyó que se pudo construir un mapa utilizando el algoritmo Random Forest para clasificar basado en imágenes (en este caso del satélite Landsat) de diferentes años en Google Earth Engine, permitiendo mostrar que los principales cambios se dieron en áreas de bosque y tierras de cultivo, también se presentó un alto valor en el índice de Kappa (0,959) indicando una alta confiabilidad para analizar la tendencia cambiante de los bosques.

En su estudio científico, Nakamo et al. (2022) examinaron las transformaciones en la cobertura del suelo en la reserva de caza Litumbandyosi-Gesimasowa utilizando la plataforma Google Earth Engine (GEE). Para este análisis, se emplearon imágenes satelitales de Sentinel 2 y Landsat 5 correspondientes a los años 1990, 2011 y 2020. Se implementó el algoritmo Random Forest para la clasificación, y para validar los resultados, se utilizaron imágenes de Planet Scope. Los resultados revelaron que, en 1990, la categoría predominante fue el bosque tropical denso, cubriendo un área de 786,14 km². Para 2011, esta categoría disminuyó a 631,56 km² y en 2020, se registraron 639,54 km² de bosque tropical denso, indicando cambios significativos en la cobertura forestal a lo largo de las décadas estudiadas. En términos de precisión, se utilizaron la exactitud global y el índice de Kappa, expresados en porcentajes. Para el año 1990, se obtuvieron valores del 99,53% en exactitud global y 98,11% en el índice de Kappa. En 2011, estos valores aumentaron a 99,84% y 98,69%, respectivamente. Para 2020, los valores fueron del 92,10% para la exactitud global y 89,62% para el índice de Kappa. Estos resultados indican la eficacia del algoritmo Random Forest en la clasificación, siendo particularmente preciso en los años 1990 y 2011, aunque aún robusto en 2020, lo que subraya la capacidad del algoritmo para analizar y caracterizar los cambios en la cobertura del suelo con alta precisión.

En su estudio científico, Setiawan et al. (2022) llevan a cabo una comparación de cuatro algoritmos de clasificación supervisada (Decision Tree, k-Nearest Neighbour, Support Vector Machine y Random Forest) aplicados en los lagos de Maninjau, Singkarak y Towuti, utilizando imágenes de Landsat 5 y 7 tomadas en diferentes años. Entre estos algoritmos, se observó que Random Forest obtuvo el índice de Kappa más alto, alcanzando 0,926, seguido de cerca por k-Nearest Neighbour con 0,922. En tercer lugar, se situó Support Vector Machines con un índice de Kappa de 0,876, mientras que Decision Tree presentó el valor más bajo con 0,717. Los resultados también se reflejaron en la exactitud global, donde nuevamente Random Forest lideró con un valor de 0,954, seguido de k-Nearest Neighbour con 0,951. Support Vector Machines obtuvo una exactitud global de 0,923, mientras que Decision Tree presentó el valor más bajo con 0,828. Estos hallazgos destacan la eficacia del algoritmo Random Forest en la clasificación precisa de los lagos estudiados, evidenciando su superioridad sobre los otros algoritmos evaluados en términos de Kappa y exactitud global.

Kranjcic et al. (2019) en su artículo científico analiza cuatro algoritmos de clasificación supervisada: Support Vector Machines, Redes Neuronales, Bayesiano y Random Forest, todos aplicado para clasificar imágenes del satélite Sentinel 2 en Varaždin y Osijek. Los resultados indicaron que el algoritmo Support Vector Machines presentó el mayor valor en índice de Kappa con 0,87 y 0,89.

En su estudio científico, Pragunanti et al. (2020) realizaron una evaluación de cuatro algoritmos de clasificación (Support Vector Machines, K-Nearest Neighbor, Decision Tree y Bayes) para caracterizar el hábitat bentónico en las aguas de la isla Pajenekang, South Sulawesi, Indonesia, utilizando imágenes del satélite Sentinel 2. En los resultados obtenidos, el algoritmo Bayes se destacó como el más efectivo, logrando una exactitud global del 78,35%. Por otro lado, el Support Vector Machines obtuvo una precisión global notablemente inferior, con un 47,42%. Estos hallazgos resaltan la eficacia del algoritmo Bayes en este contexto específico, subrayando su capacidad para realizar una clasificación precisa del hábitat bentónico en las aguas de la isla Pajenekang.

El algoritmo Support Vector Machines fue empleado en diversos estudios relacionados con la clasificación de imágenes Sentinel 1 y 2 en diferentes contextos geográficos. En una investigación llevada a cabo en los humedales de la región de Anatolian en Turquía (Kaplan Avdan, 2019) reportó una impresionante exactitud global del 94%. De manera similar, en el mapeo de la cobertura terrestre en los bosques de Zagros, ubicados en la provincia de Juzestán, se utilizaron imágenes Sentinel 2 a través de la plataforma Google Earth Engine. Los resultados obtenidos revelaron un índice de Kappa de 0,83 y una exactitud global del 91% (Eskandari y Ali, 2022). Estos estudios destacan la eficacia del algoritmo Support Vector Machines en la clasificación precisa de imágenes satelitales, mostrando su versatilidad en diferentes entornos geográficos y aplicaciones específicas.

2.2.2. Nacional

En el proyecto de tesis de Ochochoque (2017), se estableció como objetivo principal la identificación de áreas de laboreo y el seguimiento del avance de la explotación minera en el centro poblado de Malenowski, distrito de Mazuco, Región Madre de Dios, a través del uso de técnicas de teledetección espacial. La investigación fue de naturaleza cuantitativa y descriptiva, con un diseño no experimental longitudinal de método deductivo. La población de estudio comprendía el centro poblado Malenowski. En este estudio, se empleó la observación no experimental como técnica de recolección de datos, utilizando una ficha de observación como instrumento. Los análisis se llevaron a cabo utilizando imágenes disponibles en Google Earth Engine, con imágenes de los satélites Landsat y Sentinel. La clasificación se realizó mediante el algoritmo Random Forest, que mostró una excelente validez, con valores en la matriz de validación superiores al 0,95. Al examinar los cambios en el periodo de 1990 a 2016, se observaron transformaciones significativas en el uso de la tierra. La superficie dedicada a cultivos y pastizales aumentó de 0,6 kilómetros cuadrados a 23,3, mientras que los bosques disminuyeron de 226,4 kilómetros cuadrados a 193,4. Los ríos y cuerpos de agua también experimentaron cambios, pasando de 1,2 kilómetros cuadrados a 2,8%, y las áreas sin cobertura vegetal aumentaron de 5,3 a 14,0 kilómetros cuadrados. En resumen, se concluyó que el uso de imágenes satelitales, en particular las obtenidas a través de Google Earth Engine y los satélites Landsat y Sentinel 2, resultaron altamente efectivas y aplicables en estudios multitemporales para analizar cambios en el uso del suelo. La técnica del algoritmo Random Forest demostró una precisión mayor al 95%, lo que permitió identificar de manera indirecta áreas de laboreo y el avance de la explotación minera en la zona estudiada, revelando una deforestación que abarcó una extensión de más de 193 kilómetros cuadrados.

En su trabajo de tesis, Subia (2020) se propuso realizar un análisis multitemporal del cambio en la cobertura vegetal y el uso del suelo en el Parque Nacional Bahuaja Sonene (PNBS) y su zona de amortiguamiento (ZA) durante el periodo de 1984-2018. La investigación adoptó un enfoque cuantitativo de nivel correlativo con un diseño no experimental longitudinal de método deductivo, considerando como población de estudio el Parque Nacional Bahuaja Sonene y su zona de amortiguamiento. Para la recolección de datos, se empleó la técnica de observación no experimental y se utilizó una ficha de observación como instrumento. Durante el periodo mencionado, se analizaron imágenes de los satélites Landsat 4, 5, 7 y 8 utilizando la plataforma Google Earth Engine, y se aplicó el algoritmo Random Forest como clasificador. Los resultados revelaron cambios significativos en el Parque Nacional Bahuaja Sonene, incluyendo una disminución de la cobertura boscosa de 10 755,210 metros cuadrados a 1

077,580 metros cuadrados, un aumento en la superficie de cuerpos de agua de 5 472 a 6 474 metros cuadrados, y la conversión de áreas en tierras agrícolas de 0 a 241 metros cuadrados. Además, se observó una reducción en áreas desnudas de 4 232 a 3 488 metros cuadrados y en la sábana del Beni de 6 502 a 3 716 metros cuadrados. En las zonas de amortiguamiento, se registraron cambios similares, como la disminución de la cobertura boscosa de 259,150 a 250,579 hectáreas, el aumento de suelos desnudos de 626 a 2 544 hectáreas, y el cambio de suelos agrícolas de 513 a 6 469 hectáreas. Los cuerpos de agua también experimentaron cambios, aumentando de 837 a 1 535 hectáreas. En resumen, se concluyó que durante el periodo de estudio (1984-2018), se produjo un cambio total de 15,807 hectáreas, lo que representa el 1.45% del territorio total del PNBS. De estas, 3,478 hectáreas mostraron cambios de cobertura debido a sucesiones vegetales, representando el 0,32%, mientras que 12,329 hectáreas representaron cambios debidos a la dinámica natural entre bosques, cuerpos de agua y suelos desnudos, siendo más prominentes entre los ríos Tambopata y Heath. En términos de precisión, el análisis mostró una validez superior al 95%, con la excepción de los cuerpos de agua, que presentaron un valor del 85%. A pesar de esto, los resultados indican un alto grado de confiabilidad en el estudio realizado.

En el estudio llevado a cabo por Alarcón et al. (2016), el objetivo principal fue cuantificar las áreas deforestadas en el Suroeste de la ciudad de Puerto Maldonado durante el período de 1999-2013. Esta investigación se enmarcó en un enfoque cuantitativo, con un nivel descriptivo y un diseño no experimental de tipo longitudinal utilizando un método deductivo. La población estudiada abarcó el suroeste de la región Madre de Dios, incluyendo los distritos de Huepetuhe, Inambari, Madre de Dios y Laberinto. La técnica de recolección de datos empleada fue la observación no experimental, y el instrumento utilizado fue una ficha de observación. Para llevar a cabo el análisis de deforestación, se utilizaron imágenes del satélite Landsat y se aplicó el algoritmo Random Forest. Los resultados obtenidos revelaron cambios significativos en el área boscosa durante los años 1999 a 2013, donde la superficie del bosque disminuyó de 1 480 516,20 hectáreas a 1 435 074,95 hectáreas. Además, el proceso de deforestación experimentó un aumento, pasando de 32 243,50 hectáreas a 77 684,75 hectáreas durante el mismo período. Este análisis demostró una pérdida total de 55 416,04 hectáreas de bosque primario en un lapso de 14 años, lo que se traduce en una tasa de deforestación de 2 594,10 hectáreas por año. Es importante señalar que las áreas de bosque deforestadas, principalmente debido a la minería aurífera aluvial, también sufrieron un proceso de degradación del suelo. Los años 2008-2011 y 2011-2013 se destacaron como los períodos con los mayores cambios de bosque a deforestación, con 29 471,94 hectáreas y 28 539,01 hectáreas respectivamente. Estos cambios significativos estuvieron influenciados en gran parte por la crisis financiera mundial, que llevó a un aumento considerable en el precio del oro, generando un incremento en la extracción de oro y la consiguiente invasión de tierras en la región de Madre de Dios.

En su tesis, Gamarra (2017) se propuso realizar una clasificación supervisada utilizando el algoritmo Random Forest e imágenes de mediana resolución espacial, Landsat 8. Este estudio se enmarca en un enfoque cuantitativo, con un nivel descriptivo y un diseño no experimental de tipo transversal utilizando un método deductivo. La población estudiada comprendió el distrito de San Ramón, situado en la provincia de Chanchamayo en la región de Junín. La técnica de recolección de datos empleada fue la observación no experimental, y el instrumento utilizado fue una ficha de observación. Los resultados obtenidos revelaron diferentes tipos de cobertura y uso de la tierra en los centros poblados, la red vial, el mosaico agropecuario, el bosque húmedo, los arbustos y matorrales, la Puna, las áreas pedregosas naturales, las tierras desnudas o con poca vegetación, las zonas quemadas, las tierras altoandinas sin vegetación, los bofedales, los ríos y quebradas, y las lagunas. Las áreas respectivas para cada categoría se detallaron en hectáreas. El análisis arrojó un índice de Kappa de 0,922, indicando un alto grado de precisión en el mapa generado. Como conclusión, se destacó que el algoritmo Random Forest se presenta como una alternativa eficiente y precisa para implementar en la clasificación de imágenes satelitales de sensores pasivos, especialmente cuando se requiere delimitar la cobertura y uso de la tierra en la compleja geografía de la Amazonia peruana.

En su artículo científico, Cerón et al. (2021) se propusieron cuantificar la actividad minera aurífera en el departamento de Madre de Dios, Perú, durante los años 2000 y 2017. Para ello, utilizaron una clasificación supervisada empleando el algoritmo de árbol de decisión (Decision Tree) sobre imágenes satelitales capturadas por los sensores Landsat 5 y Landsat 8. La metodología adoptada se enmarca en un enfoque cuantitativo, con un nivel descriptivo y un diseño no experimental de tipo transversal utilizando un método deductivo. La población de interés para el estudio fue el departamento de Madre de Dios, Perú. La técnica de recolección de datos utilizada fue la observación no experimental, y el instrumento empleado consistió en una ficha de observación. Los resultados obtenidos revelaron un aumento significativo de 47 657,43 hectáreas de actividad minera entre los años 2000 y 2017. Las áreas más afectadas por esta actividad fueron las comunidades nativas, las concesiones destinadas a la reforestación y las zonas de amortiguamiento de las Áreas Naturales Protegidas. El análisis incluyó un índice de Kappa del 93%, lo que indica que el algoritmo de clasificación empleado proporcionó resultados consistentes y precisos en la identificación de áreas mineras. Este alto índice de

Kappa sugiere una concordancia significativa entre las clasificaciones realizadas por el algoritmo y los datos de referencia, reforzando la confiabilidad de los resultados obtenidos en el estudio.

En la investigación realizada por Puerta y Fajardo (2022), el objetivo principal fue determinar la cobertura forestal en la provincia de Leoncio Prado hasta el año 2021. Para este propósito, llevaron a cabo un estudio cuantitativo con un enfoque descriptivo y un diseño no experimental de tipo transversal, utilizando un método deductivo. La población de interés para el estudio fue toda la provincia de Leoncio Prado. Para recopilar datos, se empleó la técnica de observación no experimental y se utilizó una ficha de observación como instrumento. Los resultados obtenidos revelaron que la provincia tenía un total de 349 811,47 hectáreas de bosque, lo que representaba aproximadamente el 71,30% de la superficie total. Además, se identificaron 95 872,40 hectáreas de áreas degradadas y 35 519,72 hectáreas de áreas intervenidas. En términos específicos de la distribución de la cobertura forestal, el distrito de Castillo Grande se destacó al presentar una cobertura forestal de 6 458,08 hectáreas para el año 2021. Estos resultados fueron obtenidos mediante la aplicación del algoritmo Random Forest. Es importante destacar que la precisión del estudio fue validada a través de un índice de Kappa de 0,77 y una exactitud global del 89,14%, lo que subraya la confiabilidad de los resultados proporcionados por el algoritmo utilizado. Estos hallazgos brindan una comprensión detallada de la situación forestal en la provincia de Leoncio Prado hasta el año 2021.

En su investigación, Chahua (2019) se propuso examinar la deforestación en el lapso comprendido entre 2006 y 2018 en el distrito de Daniel Alomía Robles. Para llevar a cabo este análisis, empleó una metodología de clasificación supervisada con imágenes provenientes de Sentinel 2A, Landsat 5 y Landsat 8. El estudio se dividió en tres periodos distintos: 2006-2010, 2010-2014 y 2014-2018. Los resultados obtenidos revelaron una alarmante superficie deforestada de 8 366,33 hectáreas para el año 2018, lo que representó más del 50% del área total del distrito. Además, se calculó un índice de kappa de 0,75, indicando una notable concordancia en los datos clasificados. Es especialmente preocupante el periodo de 2014-2018, que mostró la tasa de deforestación más alta, alcanzando un valor de 176,8 hectáreas por año. Estos hallazgos resaltan la urgencia de abordar el problema de la deforestación en el distrito Daniel Alomía Robles y subrayan la necesidad de medidas efectivas para mitigar este impacto ambiental.

En el estudio llevado a cabo por Salas et al. (2014), el objetivo principal fue calcular la tasa de deforestación en el distrito de Florida, ubicado en el departamento de Amazonas, durante los años 1987 y 2013. El área de interés abarcó 22 240,5 hectáreas de territorio. Para llevar a

cabo el análisis, se emplearon imágenes satelitales Landsat 5 y 7 correspondientes a los años mencionados, utilizando el algoritmo Nearest Neighbor. Los resultados obtenidos revelaron que en el periodo comprendido entre 1987 y 2000, el distrito experimentó una tasa de deforestación de 232,2 hectáreas por año. En contraste, en el periodo de 2000 a 2013, esta tasa se redujo significativamente a 19,52 hectáreas por año. Estos datos demuestran una disminución en la tasa de deforestación en el distrito de Florida a lo largo del tiempo, lo que sugiere posibles cambios en las prácticas de uso de la tierra o políticas de conservación que han tenido un impacto positivo en la conservación del bosque en esta región específica del departamento de Amazonas.

En su estudio, Mendoza et al. (2015) se propusieron analizar los cambios en la cobertura boscosa debidos a la deforestación en el distrito de Leymebamba, provincia de Chachapoyas, departamento de Amazonas, durante el periodo de 1989-2016. Este análisis se basó en la clasificación de imágenes utilizando un enfoque basado en objetos, empleando datos del satélite Landsat correspondientes a los años 1989, 1998, 2007 y 2016. Los resultados obtenidos revelaron que la tasa más alta de deforestación ocurrió en el periodo de 1989 a 1998, con una velocidad de pérdida de 262,7 hectáreas por año. En los años subsiguientes, estas tasas disminuyeron significativamente: durante el periodo de 1998 a 2007, la tasa de deforestación se redujo a 34,8 hectáreas por año, y posteriormente, de 2007 a 2016, descendió a 58,2 hectáreas por año. Este análisis subraya una disminución en las tasas de deforestación a lo largo del tiempo en el distrito de Leymebamba, indicando posibles cambios en las prácticas de uso de la tierra o implementación de medidas de conservación que han influido positivamente en la preservación del bosque en esta región específica del departamento de Amazonas.

Según Geobosques (s.f) a través de su plataforma presenta datos a nivel nacional, donde para el distrito de Castillo Grande al año 2021 presenta un total de área de bosque de 2 802,32 hectáreas, un total de área deforestada de 2 986,10 hectáreas y una tasa de deforestación de 36,76 hectáreas por año del 2016 al 2021. La plataforma Geobosques utiliza imágenes del satélite Landsat (30 metros de resolución espacial), para clasificar utilizan el algoritmo árboles de decisión (Decision Trees). En teledetección mientras a mejor resolución espacial es mejor la clasificación que se hace a las imágenes (Gao y Mas, 2008; Gao, 2010; Du et al., 2016)), pero también es importante seleccionar un buen algoritmo de clasificación (Ugur et al., 2013).

En el estudio realizado por Chucos y Vega (2022), se emplearon imágenes del satélite Landsat para llevar a cabo la clasificación del terreno mediante diversos algoritmos de clasificación supervisada, incluyendo Support Vector Machines, Random Forest, Naive Bayes y Decision Tree. Además, se exploró un algoritmo de clasificación no supervisada como parte del análisis. Los resultados revelaron que los algoritmos Support Vector Machine y Naive Bayes exhibieron una precisión notablemente superior, con un índice de Kappa de 0,909, en comparación con el algoritmo Decision Tree, que presentó un índice de Kappa de 0,864. Estos hallazgos resaltan la eficacia de los algoritmos Support Vector Machine y Naive Bayes en la clasificación precisa del terreno basada en imágenes Landsat.

III. MATERIALES Y MÉTODOS

3.1. Lugar de ejecución

3.1.1. Ubicación geográfica

La presente investigación fue desarrollada en el distrito Castillo Grande que presenta un rango altitudinal de 583 a 1 487 m s. n. m. (Sánchez, 2009), cuyo centroide se ubica en coordenadas UTM: E 385 914 y N 8 982 017, zona 18 L. El área estudiada cuenta con 10 501,07 hectáreas.

3.1.2. Ubicación política

El área de investigación se encuentra políticamente ubicado en

Distrito: Castillo Grande

Provincia: Leoncio Prado

Región: Huánuco

3.1.3. Características climáticas

El distrito Castillo Grande presenta un 85% de humedad relativa, así también una precipitación anual de 3 300 mm siendo los meses de enero a marzo donde presenta mayor frecuencia de lluvias. La temperatura media anual está entre los 22° C y 32° C, algunas veces llega hasta 36° C. (Servicio Nacional de Meteorología e Hidrología del Perú [SENAMHI], s.f)

3.1.4. Zona de vida

Según el Instituto Nacional de Recursos Naturales (INRENA, 1995) el distrito Castillo Grande pertenece a las zonas de vida de bosque muy húmedo - Premontano Tropical (bmh-PT) y bosque húmedo – Tropical (bh-T).

3.2. Material y métodos

3.2.1. Materiales y equipos

3.2.1.1. Materiales de fase de campo

Tablero de madera, fichas de observación, lapiceros.

3.2.1.2. Materiales cartográficos

Imágenes Planet (4,7 m x 4,7 m de resolución espacial), mosaicos del año 2016 y 2022 de Sentinel 2.

3.2.1.3. Herramientas de teledetección

Google Earth Engine (GEE).

3.2.1.4. Softwares

Microsoft Word, ArcGis 10.5, QGis 3.22, SPSS Statistic 25, Microsoft Excel.

3.2.1.5. Equipos

Laptop Lenovo Core i5, GPS Garmin 62s.

3.2.2. Metodología

3.2.2.1. Exactitud temática de la clasificación en los mapas de deforestación del distrito Castillo Grande, Huánuco, Perú de los años 2016 y 2022 con los algoritmos de Support Vector Machine (SVM), Decision Tree (DT) y Random Forest (RF) en imágenes Sentinel 2

En Google Earth Engine se creó dos códigos (script) en el Code Editor de la plataforma para generar dos mosaicos del satélite Sentinel 2 con el criterio que presenten menos del 20% de nubes y sombra de nubes con los años deseados (2016 y 2022). Se trabajó con la combinación de bandas 12, 8 y 3, rango de fechas del año 2016 de "01/09/2016 al "31/12/2016", del año 2022 del rango de fechas del "01/05/2022" al "23/09/2023" y utilizando el Image Collection permitido por la plataforma y nombrado "mosaic" que es una herramienta que permite crear un mosaico a partir de los criterios mencionados anteriormente en la imagen, de esa forma solucionando el problema de las nubes. Con la combinación de bandas se procedió a clasificar en GEE el mosaico del año 2016 y del año 2022 utilizando para cada uno tres algoritmos de clasificación supervisada, el Support Vector Machine (SVM), Decision Tree (DT) y Random Forest (RF). Se clasificó en cada algoritmo los mosaicos primero en cuatro categorías para posteriormente reclasificarse en tres categorías como indica la **Tabla 5**.

N°	Categorías (Clasificación)	Reclasificado	
1	Bosques	Bosques	
2	Vegetación secundaria	Deferentede	
Z	Deforestado	Deforestado	
3	Hidrografía	Hidrografía	

Tabla 4. Categorías para clasificación y reclasificación.

Fuente: Propia

Posteriormente la clasificación de cada algoritmo de los dos mosaicos al igual que los mosaicos fueron exportadas del GEE a archivos raster donde utilizando el software ArcGis 10.5 se procesó los archivos raster para convertirlos en archivos shapefiles con los que se elaboró los mapas de deforestación por cada algoritmo de clasificación en cada año. Se trabajó a una escala de 1:20 000 con Datum WGS 84 en la zona 18 S utilizando el ArcGis 10.5. Para la validación de la clasificación de cada algoritmo del año 2016 se usó imágenes del satélite Planet que presenta resolución espacial de 4,7 m x 4,7 m, estás son proporcionadas gratuitamente a través de un plugin del software QGIS, igualmente para el año 2022, utilizando imágenes Planet y salida a campo para verificación de puntos de validación. El procedimiento de validación con imágenes Planet se basó en constatar que lo que se muestra en la clasificación de cada mapa de deforestación con la imagen Planet, para ello se creó puntos de validación con el método de muestreo aleatorio simple donde fueron divididos en las categorías que serán clasificadas (Bosque, Deforestado y Hidrografía). Se verificó la coincidencia de la imagen con las categorías por lo cual estos datos fueron colocados en sus correspondientes fichas de observación para cada algoritmo en ambos años. Los datos de las fichas de observación fueron analizados a través de una matriz de confusión donde se determinó la exactitud global del mapa. Para obtener los valores de índice de Kappa se utilizó el software SPSS Statistics 25.

Al obtener los valores de confiabilidad de cada algoritmo para cada año se procedió a trabajar exclusivamente con la clasificación (en formato shapefile) cuyo algoritmo presentó mayor índice de Kappa y exactitud global.

Figura 3. Metodología realizada la clasificación y validación ^{Fuente: Propia}

3.2.2.2. Superficie deforestada de los años 2016 y 2022 en el distrito Castillo Grande, Huánuco, Perú

Utilizando el software ArcGis 10.5, en la tabla de atributos de los shapefiles del algoritmo de clasificación que presentó mayor exactitud temática para cada año, se creó una nueva columna para posteriormente calcular el área de cada categoría expresada en hectáreas obteniendo la superficie de cada categoría de los años 2016 y 2022.

3.2.2.3. Tasa de deforestación de los años 2016 y 2022 en el distrito Castillo Grande, Huánuco, Perú

Se utilizó la ecuación de Laurente (2011) para calcular la tasa de deforestación:

Tasa anual de deforestación = (ABf-ABi)/N (2)

ABf: Área con bosque del año final (ha)

ABi: Área con bosque del año inicial (ha)

N: años del periodo de estudio

3.2.3. Tipo de investigación

Cuantitativa, aplicada, descriptiva, no experimental y longitudinal.

3.2.3.1. Variable

La deforestación en el distrito Castillo Grande, Huánuco, Perú de los años 2016 y 2022.

3.2.3.2. Indicadores

Los indicadores fueron las categorías que se clasificaron que son las siguientes: Bosque, deforestado e hidrografía, expresada en hectáreas. También el indicador de los cambios de coberturas (hectáreas/año), el índice de Kappa y la exactitud global (%).

Variables de estudio	Dimensión	Indicadores	
		Categorías de coberturas (ha):	Bosque
	Espacial		Deforestado
Deforestación			Hidrografía
	Temporal	Cambios de cobertura	(ha/año)
	Exactitud	Índice de Kappa	
		Exactitud Global (%)	

 Tabla 5. Variable de estudio con sus dimensiones e indicadores.

3.2.3.3. Población

La población está compuesta por todo el distrito Castillo Grande.

3.2.3.4. Muestra

Para calcular la muestra se usó la fórmula de tamaño de muestra del MINAM (2014b):

$$Tamaño \ de \ la \ muestra = \frac{S^2 \ x \ P \ x \ Q}{e^2} \quad (3)$$

Donde:

S: Valor de la abscisa de la curva normal estandarizada para un nivel determinado de probabilidad, se obtiene de la tabla Z.

P: indica el porcentaje de aciertos estimado por el área de la categoría.

Q: índica del porcentaje de errores (q = 1 - p), e: el nivel permitido del error.

e: Nivel permitido de error

Se usó un valor de P de 85%, un valor de Q de 15% y un 10% del valor e obteniendo 49 puntos de validación por categoría.
3.2.3.5. Muestreo

Se usó el muestreo aleatorio simple para distribuir 49 puntos por cada categoría dentro de toda el área del distrito Castillo Grande.

3.2.4. Técnicas e instrumentos de recolección de datos

Fue la observación no experimental donde se utilizó como instrumento fichas de observación.

IV. RESULTADOS Y DISCUSIÓN

4.1. Exactitud temática de la clasificación de los mapas de deforestación del distrito Castillo Grande, Huánuco, Perú de los años 2016 y 2022

En la **Figura 4** se muestra los resultados de los valores del índice de Kappa para los años 2016 y 2022; como se observa, la mayor exactitud presentó el algoritmo Random Forest en ambos periodos de análisis.

Figura 4. Valores de índice de Kappa para cada algoritmo de clasificación supervisada.

En la **Figura 5** se presenta los resultados de la exactitud global para el año 2016 y 2022 de igual forma, predominó el algoritmo Random Forest con (89,80% y 93,20% respectivamente) y el que menor valores presentó fue el algoritmo Support Vector Machines (77,55% y 78,91% respectivamente). Tanto en exactitud global (EG) y índice de Kappa (IK), el algoritmo Decision Tree ocupó el segundo lugar con valores de 80,95% y 89,12% en exactitud global y 0,71 y 0,84 en el índice de Kappa.

Figura 5. Valores de exactitud global para cada algoritmo de clasificación supervisada

El algoritmo que mejor clasificó para ambos años fue el algoritmo Random Forest con valores superiores al 89% en EG y 0,85 en el IK teniendo una concordancia casi perfecta como menciona López (2018), estando de acuerdo con distintas investigaciones (Li Wang, 2020; Luo et al., 2021; Piao et al., 2021; Nakamo et al., 2022; Setiawan et al., 2022; Ochochoque, 2017; Subia, 2020; Alarcón et al., 2016; Gamarra, 2017) donde se utiliza por excelencia el algoritmo e incluso comparando con otros algoritmos en imágenes Sentinel y Landsat donde mayormente presentan valores en índice de Kappa y exactitud global superiores al 85% coincidiendo que presenta una clasificación casi perfecta, pero esto no minimiza la importancia del uso de otros algoritmos porque también otro algoritmo puede ser superior a otro, en este caso fue Random Forest superior a los algoritmos SVM y Decision Tree pero también estos pueden superar a Random Forest en sitios donde predomina área urbana (Kranjic et al., 2019). En cuanto al algoritmo Support Vector Machines ocupó el último lugar, cosa que es diferente al estudio de Suquilandia (2020) en su estudio donde comparó con otro algoritmo, y el SVM fue superior utilizando imágenes Sentinel 2 y también a los estudios de Kaplan y Avdan (2019) y Eskandari y Ali (2022) donde presentaron valores superiores al 90% en exactitud global, incluso en el estudio de Chucos y Vega (2022) el SVM supera a los algoritmos Random Forest y Decision Tree, pero también comparando con otros algoritmos resulta también bastante deficiente el algoritmo clasificando las mismas imágenes (Pragunanti et al., 2020). En el algoritmo Decision Trees presentó valores más bajos comparados con los estudios de Cuadra et al. (2020) y Cerón et al. (2021) donde alcanzó en exactitud global valores superiores al 93% utilizando imágenes de menor resolución espacial que la Sentinel, con imágenes Landsat 5 y 8.

Figura 6. Área en hectáreas de las categorías clasificadas de los años 2016 y 2022.

En la **Figuras 6** se muestra la superficie estimada obtenida por el algoritmo Random Forest para el año 2016 y 2022 donde para el primer año presenta 7 095,29 ha de superficie de bosque siendo la que mayor área abarca en el distrito con 67,57%, en deforestado se estimó 3 284,59 hectáreas que equivale a 31,28% del total del área, mientras que la hidrografía presentó 121,19 hectáreas siendo un 1,15% del total del área. Mientras que para el año 2022 la categoría que más área presenta es la categoría deforestado con 5 440,23 hectáreas equivalente a un 51,81% del área del distrito, quedando ahora segundo lugar el área bosque con 4 883,49 hectáreas representado un 46,50% del área del distrito y la categoría hidrografía presentó 177,35 hectáreas equivalente a 1,69% del total del área. L

El área de bosque para el año 2022 es exageradamente diferente al área de bosque del año 2021 según Geobosques (s.f) con 2 802,32 hectáreas, esto es debido a que Geobosques utiliza imágenes de menor resolución que Sentinel 2, utilizando Landsat 8, influyendo en la clasificación de imágenes con el algoritmo donde utilizan el Decision Tree donde se demostró

que Random Forest es eficiente clasificando a escala distrital siendo superior a Decision Tree, por ello es que presentan valores diferentes tanto por la escala de clasificación, el algoritmo y la resolución espacial de las imágenes a clasificar (Gao y Mas, 2008; Gao, 2010, Du et al., 2016; Ugur et al., 2013). Mientras que en la investigación de Puerta y Fajardo (2022) presenta valores bastante cercanos a los resultados del presente estudio con un área de bosque de 6 458,08 hectáreas incluso siendo a nivel provincial el resultado.

Figura 7. Mapa de deforestación del año 2016

Figura 8. Mapa de deforestación al año 2022

4.3. Tasa de deforestación de los años 2016 y 2022 en el distrito Castillo Grande, Huánuco, Perú

Para los años 2016 y 2022 se presentó una disminución en el área de bosque en un periodo de 6 años de 2 211,80 hectáreas, resultando en una tasa de deforestación de 368,63 hectáreas por año (ha/año) como está presente en la **Tabla 5**.

Categoría (ha)20162022Deforestado3 284,595 440,23Bosque7 095,294 883,49Hidrografía121,19177,35Tasa de deforestación (ha/año)368,63

Tabla 5. Tasa de deforestación

La tasa de deforestación del presente estudio presenta una gran diferencia a lo mencionado por Geobosques (s.f) donde indica que en el distrito Castillo Grande del 2016 al 2021 existe una tasa de deforestación de 36,76 ha/año, este valor debido a lo anteriormente mencionado que es muy diferente clasificar a nivel distrital y nivel nacional, también el uso de imágenes con menor resolución espacial que son las Landsat 8 y el uso de otro algoritmo. A nivel distrital la tasa de deforestación es bastante cercano a lo presentado por Mendoza et al. (2015) en el distrito de Leymebamba pero en el periodo 1989 y 1998, e igual con la investigación de Salas et al. (2014) en los años 1987 y 2000 con 262,7 ha/año y 232,2 ha/año respectivamente. Pero en el estudio de Chahua (2019) presenta el valor de 176,8 ha/año en los años 2014 y 2018 siendo el más cercano a nivel distrital y en tiempo al resultado en la presente investigación.

V. CONCLUSIONES

- La exactitud temática de la clasificación en los mapas de deforestación del distrito Castillo Grande, Huánuco, Perú de los años 2016 y 2022 en imágenes Sentinel 2 fue mejor, utilizando el algoritmo Random Forest con valores en el índice de Kappa de 0,85 y 0,90 y en la exactitud global valores de 89,90% y 93,20%.
- La superficie estimada deforestada en el distrito Castillo Grande del año 2016 fue de 3 284,59 hectáreas (31,28% del área total), mientras la superficie deforestada para el año 2022 ascendió a 5 440,23 hectáreas (51,81% del área total).
- La tasa de deforestación en el distrito Castillo Grande de los años 2016 y 2022 fue de 368,63 ha/año.

VI. PROPUESTAS A FUTURO

 Hacer constante el monitoreo de la deforestación en el distrito Castillo Grande, utilizando imágenes de mayor resolución espacial y con otros algoritmos de clasificación supervisada.

VII. REFERENCIAS

- Abraira, V. (2001). El índice Kappa. *SEMERGEN Medicina de Familia*, 27(5), 247-249. https://doi.org/10.1016/S1138-3593(01)73955-X
- Alarcón, G., Díaz, J., Vela, M., García, M. y Gutiérrez, J. (2016). Deforestación en el sureste de la amazonia del Perú entre los años 1999—2013; caso Regional de Madre de Dios (Puerto Maldonado – Inambari). *Revista Investigaciones Altoandinas, 18*(3), 319-330.
- Alganci, U., Sertel, E., Ozdogan, M., y Ormeci, C. (2013). Parcel-Level Identification of Crop Types Using Different Classification Algorithms and Multi-Resolution Imagery in Southeastern Turkey. *Photogrammetric Engineering y Remote Sensing*, 79(11), 1053-1065. https://doi.org/10.14358/PERS.79.11.1053
- Alonso, D. (15 de mayo de 2019). Combinación de bandas en imágenes de satélite Landsat y Sentinel. MappingGIS. https://mappinggis.com/2019/05/combinaciones-de-bandas-enimagenes-de-satelite-landsat-y-sentinel/
- Anaya, J. A., y Chuvieco, E. (2012). Validación para Colombia de la estimación de área quemada del producto L3JRC en el periodo 2001-2007. Actualidades Biológicas, 32(92), 29–40. https://revistas.udea.edu.co/index.php/actbio/article/view/331483
- Arai, E., Shimabukuro, Y. E., Pereira, G. y Vijaykumar, N. L. (2011). A Multi-Resolution Multi-Temporal Technique for Detecting and Mapping Deforestation in the Brazilian Amazon Rainforest. *Remote Sensing*, 3(9), 1943-1956. <u>https://doi.org/10.3390/rs3091943</u>
- Ávila, I., Ortiz, E., Soto, C., Vargas, Y., Aguilar, H y Miller, C. Evaluación de cuatro algoritmos de clasificación de imágenes satelitales Landsat 8 y Sentinel 2 para la identificación de cobertura boscosa en paisajes altamente fragmentados en Costa Rica. *Revista de teledetección 57*, 37-49.
- Baisch, P., da Silva, R. y Barreto, S. (2012). Determinação do desmatamento através da classificação digital de cenas do Satélite Landsat 5. *Disciplinarum Scientia*, 13(2), 151-158.
- Bardales, N. (2021). Caracterización de microhábitats de Ranitomeya sirensis (Aichinger, 1991) en Dendrocalamus asper (Schultes f.) del Bosque Reservado de la Universidad Nacional Agraria de la Selva, Tingo María, Perú. [Tesis de grado, Universidad Nacional Agraria de la Selva]. Repositorio institucional.

- Belgiu, M. y Drăguţ, L. (2016). Random forest in remote sensing: A review of applications and future directions. *ISPRS Journal of Photogrammetry and Remote Sensing*, 114, 24-31. https://doi.org/10.1016/j.isprsjprs.2016.01.011
- Brinkhoff, J., Houborg, R., y Dunn, B. W. (2022). Rice ponding date detection in Australia using Sentinel-2 and Planet Fusion imagery. *Agricultural Water Management*, 273, 107907. <u>https://doi.org/10.1016/j.agwat.2022.107907</u>
- Butt, A., Shabbir, R., Ahmad, S. S. y Aziz, N. (2015). Land use change mapping and analysis using Remote Sensing and GIS: A case study of Simly watershed, Islamabad, Pakistan. *The Egyptian Journal of Remote Sensing and Space Science*, 18(2), 251-259. https://doi.org/10.1016/j.ejrs.2015.07.003
- Cerda, J. y Villarroel Del P, L. (2008). Evaluation of the interobserver concordance in pediatric research: The Kappa Coefficient. *Revista chilena de pediatría*, 79(1), 54-58. https://doi.org/10.4067/S0370-41062008000100008
- Cerón C., L., Miranda S., N., y Rubin-de-Celis L., E. (2021). Deforestación por actividad minera en el departamento de Madre de Dios-Perú para los años 2000 Y 2017. Anales *Científicos*, 82(1), 122–129. https://doi.org/10.21704/ac.v82i1.1748
- Chahua, E. (2019). Análisis de la deforestación en el periodo 2006 2018. del distrito Daniel Alomía Robles. [Tesis de grado, Universidad Nacional Agraria de la Selva]. Repositorio Institucional.
- Chucos, N., y Vega, E. J. (2022). Evaluación de algoritmos de machine learning en la clasificación de imágenes satelitales multiespectrales, caso: Amazonia Peruana. *Ciencia Latina Revista Científica Multidisciplinar*, 6(1), Art. 1. https://doi.org/10.37811/cl_rcm.v6i1.1843
- Chuvieco, E. y Salas, J. (1996). Mapping the spatial distribution of forest fire danger using GIS. International Journal of Geographical Information Systems, 10(3), 333-345. https://doi.org/10.1080/02693799608902082
- Chuvieco, E. (2019). *Teledetección ambiental: La observación de la Tierra desde el espacio*. Digital Reasons.
- Colditz, R. 2007. *Time Series Generation and Classification of MODIS Data for Land Cover Mapping*. [Tesis doctoral, Universidad de Würzburg]. Biblioteca Universitaria.
- Cuadra, D. E., Insaurralde, J. A. y Montes Galbán, E. J. (2020). Evaluación espacio-temporal de la deforestación en el noroeste de la provincia del Chaco (1986-2018): Mediante el

uso combinado de Sistemas de Información Geográfica y Procesamiento Digital de Imágenes. *Revista digital del Programa de Docencia e Investigación en Sistemas de Información Geográfica*, (17), 1-10.

- De Ullibarri, I., y Pita, S. (1999). Medidas de concordancia: El índice Kappa. *Cadernos de atención primaria*, 6(4), 223-226.
- Du, Y., Yihang, Z., Feng, L., Qunming W., Wenbo, L., y Xiaodong, L. (2016). Water Bodies Mapping from Sentinel-2 Imagery with Modified Normalized Difference Water Index at 10-m Spatial Resolution Produced by Sharpening the SWIR Band. *Remote Sensing* 8(4), 354. https://doi.org/10.3390/rs8040354
- Eskandari, S., y Ali, S. (2022). Mapping land cover and forest density in Zagros forests of Khuzestan province in Iran: A study based on Sentinel-2, Google Earth and field data. *Ecological Informatics*, 70, 101727. <u>https://doi.org/10.1016/j.ecoinf.2022.101727</u>
- Estévez, J., Vicent, J., Rivera-Caicedo, J. P., Morcillo-Pallarés, P., Vuolo, F., Sabater, N., Camps-Valls, G., Moreno, J., y Verrelst, J. (2020). Gaussian Processes Retrieval of LAI from Sentinel-2 Top-of-Atmosphere Radiance Data. *ISPRS Journal of Photogrammetry and Remote Sensing*, *167*, 289-304. https://doi.org/10.1016/j.isprsjprs.2020.07.004
- Fontúrbel, F. E. (2007). Evaluación de la pérdida de la cobertura del bosque seco Chaqueño en el municipio de torotoro y en el Parque Nacional Torotoro (Potosí, Bolivia), mediante teledetección. *Ecología Aplicada, 6*(1-2), 59-66.
- Gamarra, S. (2017). Análisis de la cobertura y uso de la tierra utilizando imágenes de resolución espacial media para el distrito de San Ramón-Chanchamayo-Junín-Perú.
 [Tesis de grado, Universidad Nacional Agraria de la Selva]. Repositorio Institucional.
- Gao, Y., y Mas, J.F. (2008). A Comparison of the Performance of Pixel Based and Object Based Classifications over Images with Various Spatial Resolutions. *Online Journal of Earth Sciences*, 2: 27-35. <u>https://medwelljournals.com/abstract/?doi=ojesci.2008.27.35</u>
- Gao, J. (2010) A comparative study on spatial and spectral resolutions of satellite data in mapping mangrove forests, *International Journal of Remote Sensing*, 20(14), 2823-2833. doi: 10.1080/014311699211813
- Geobosques (s.f). Bosque No bosque y pérdida de bosque 2000 2021. Recuperado 15 de diciembre del 2022. <u>Geobosques (minam.gob.pe)</u>

- Granja, A. (2020). Detección de cambios de uso y cobertura de los bosques utilizando clasificación directa de cambios y post – clasificación. [Tesis de maestría, Universidad Nacional de La Plata]. Repositorio Institucional.
- Gómez, I. U. H., Ellis, E. A. y Gómez, C. A. G. (2013). Aplicación de teledetección y sistemas de información geográfica para el análisis de deforestación y deterioro de selvas tropicales en la región Uxpanapa, Veracruz. GeoFocus. *Revista Internacional de Ciencia y Tecnología de la Información Geográfica, 1*(13), 1-24.
- Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D. y Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. *Remote Sensing of Environment*, 202, 18-27. https://doi.org/10.1016/j.rse.2017.06.031
- Grinand, C., Rakotomalala, F., Gond, V., Vaudry, R., Bernoux, M. y Vieilledent, G. (2013).
 Estimating deforestation in tropical humid and dry forests in Madagascar from 2000 to 2010 using multi-date Landsat satellite images and the random forests classifier. *Remote Sensing of Environment*, 139, 68-80. https://doi.org/10.1016/j.rse.2013.07.008
- Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A., Tyukavina, A., Thau, D., Stehman, S. V., Goetz, S. J., Loveland, T. R., Kommareddy, A., Egorov, A., Chini, L., Justice, C. O. y Townshend, J. R. G. (2013). High-Resolution Global Maps of 21st-Century Forest Cover Change. *Science*, 342(6160), 850-853. https://doi.org/10.1126/science.1244693
- Hernández, R., Fernández, C y Baptista, M. (2014). *Metodología de la investigación*. (6. ^a ed.).Mc Graw Hill Education.
- Instituto de Hidrología, Meteorología y Estudios Ambientales., Instituto Geográfico Agustín Codazzi y Corporación Autónoma Regional del Río Grande de la Magdalena. (2008). *Mapa de Cobertura de la Tierra Cuenca Magdalena-Cauca: Metodología CORINE Land Cover adaptada para Colombia a escala 1:100.000*. Instituto de Hidrología, Meteorología y Estudios Ambientales, Instituto Geográfico Agustín Codazzi y Corporación Autónoma Regional del río Grande de La Magdalena.
- Instituto Geográfico Nacional. (s.f.). Infraestructura Nacional de Datos Geoespaciales Fundamentales del Perú. Recuperado el 10 de noviembre de 2021.
- Instituto Nacional de Recursos Naturales. (1995). *Mapa ecológico del Perú. Guía explicativa*. Ministerio de Agricultura.

- Kaplan, G., y Avdan, U. (2019). Evaluating the utilization of the red edge and radar bands from sentinel sensors for wetland classification. *CATENA*, 178, 109-119. <u>https://doi.org/10.1016/j.catena.2019.03.011</u>
- Kranjcic, N., Medak, D., Zupan, R., y Rezo, M. (2019). Machine learning methods for classification of the green infrastructure in city areas. *IOP Conference Series: Earth and Environmental Science*, 362(1), 012079. <u>https://doi.org/10.1088/1755-1315/362/1/012079</u>
- Laurente, M. (2011). Medición de la deforestación mediante percepción remota en la microcuenca río Supte, Tingo María–Perú. GeoFocus. Revista Internacional de Ciencia y Tecnología de la Información Geográfica, (11), 1-15.
- Li, J. y Wang, L. (2-6 de noviembre de 2020). Forest Type Classification with Multitemporal Sentinel-2 Data. [Conferencia]. 2020 International Conferences on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData) and IEEE Congress on Cybermatics (Cybermatics). https://doi.org/10.1109/iThings-GreenCom-CPSCom-SmartData-Cybermatics50389.2020.00091
- López, J. (2018). Generación de cartografía vectorial automática para cuerpos de agua aplicando análisis multiresolución en imágenes satelitales de alta resolución espacial en la sabana de Bogotá. [Tesis de grado, Universidad distrital Francisco José de Caldas]. Repositorio Institucional.
- Luo, J., Ma, X., Chu, Q., Xie, M. y Cao, Y. (2021). Characterizing the Up-To-Date Land-Use and Land-Cover Change in Xiong'an New Area from 2017 to 2020 Using the Multi-Temporal Sentinel-2 Images on Google Earth Engine. *ISPRS International Journal of Geo-Information*, 10(7), 464. https://doi.org/10.3390/ijgi10070464
- Marapi, R. (16 de diciembre de 2013). La deforestación de los bosques: un proceso indetenible. SERVINDI.
- Martinez, G. (2020). Teledetección aplicada a la deforestación de la Amazonía e impactos del COVID-19 sobre la contaminación en Europa mediante Google Earth Engine. [Tesis de grado, Universidad Autónoma de Madrid]. Repositorio Institucional.
- Méndez, J. (2020). Deforestación en la RNN Nunak, el PNN Chiribique y sus alrededores entre 1990 y 2020, utilizando algoritmos de Machine Learning y sus cálculos de precisión.
 [Tesis de grado, Universidad de los Andes]. Repositorio Institucional.

- Mendoza, M.E., Salas, R., y Barboza, E. (2015). Análisis multitemporal de la deforestación usando la clasificación basada en objetos, distrito de Leymebamba (Perú). *Revista INDES 3*(2):67-76
- Ministerio del Ambiente. (s.f.). *Bosque y Pérdida de Bosque*. Recuperado el 27 de setiembre del 2021 de http://geobosques.minam.gob.pe/geobosque/view/perdida.php
- Ministerio del Ambiente. (2014a). Memoria técnica: Cuantificación de la Cobertura de Bosque y Cambio de Bosque a no Bosque de la Amazonía Peruana. Periodo 2009-2010-2011.
 Dirección General de Ordenamiento Territorial.
- Ministerio del Ambiente. (2014b). *Protocolo de Evaluación de la Exactitud Temática del mapa de deforestación*. Dirección General de Ordenamiento Territorial.
- Ministerio del Ambiente. (2019). Cobertura y deforestación en los bosques húmedos amazónicos 2018. Programa Nacional de Conservación de Bosques para la Mitigación del Cambio Climático. <u>http://www.bosques.gob.pe/archivo/Apuntes-del-Bosque-N1.pdf</u>
- Murillo, R. (2018). Implementación del método de máquinas de soporte vectorial en bases de datos espaciales para análisis de clasificación supervisada en imágenes de sensores remotos. [Tesis de maestría, Universidad Distrital Francisco José de Caldas]. Repositorio Institucional.
- Nakamo, S. J., Syartinilia, y Setiawan, Y. (2022). Assessment of Land Cover Changes in Litumbandyosi-Gesimasowa Game Reserve using Remote Sensing and GIS. *IOP Conference Series: Earth and Environmental Science*, 950(1), 012083. https://doi.org/10.1088/1755-1315/950/1/012083
- National Aeronautics and Space Administration. (s.f.). EarthData Search. https://search.earthdata.nasa.gov/search
- Ni, R., Tian, J., Li, X., Yin, D., Li, J., Gong, H., Zhang, J., Zhu, L., y Wu, D. (2021). An enhanced pixel-based phenological feature for accurate paddy rice mapping with Sentinel-2 imagery in Google Earth Engine. *ISPRS Journal of Photogrammetry and Remote Sensing*, 178, 282-296. <u>https://doi.org/10.1016/j.isprsjprs.2021.06.018</u>
- Ochochoque, J. (2017). Aplicación de la teledetección en el avance de la explotación minera, centro poblado de Malenowski, distrito de Mazuco, región Madre de Dios. [Tesis de grado, Universidad Nacional del Altiplano]. Repositorio Institucional.

- Olcoz, I. (2016). *Copernicus: Automatización de la descarga de imágenes de Sentinel*. [Tesis de grado, Universidad Pública de Navarra]. Repositorio Institucional.
- Organización de las Naciones Unidas para la Agricultura y la Alimentación. (2012). FRA 2015 Términos y Evaluaciones. Organización de las Naciones Unidas para la Agricultura y la Alimentación.
- Organización de las Naciones Unidas para la Agricultura y la Alimentación. (2016). *Los bosques y el cambio climático en el Perú*. Organización de las Naciones Unidas para la Agricultura y la Alimentación.
- Organización de las Naciones Unidas para la Agricultura y Alimentación. (2020). *Evaluación de los recursos forestales mundiales 2020 principales resultados*. Organización de las Naciones Unidas para la Agricultura y Alimentación. https://doi.org/10.4060/ca8753es
- Padilla, M., Stehman, S. V., Ramo, R., Corti, D., Hantson, S., Oliva, P., Alonso-Canas, I., Bradley, A. V., Tansey, K., Mota, B., Pereira, J. M. y Chuvieco, E. (2015). Comparing the accuracies of remote sensing global burned area products using stratified random sampling and estimation. *Remote Sensing of Environment*, 160, 114-121. https://doi.org/10.1016/j.rse.2015.01.005
- Pekel, J. F., Cottam, A., Gorelick, N. y Belward, A. S. (2016). High-resolution mapping of global surface water and its long-term changes. *Nature*, 540(7633), 418-422. https://doi.org/10.1038/nature20584
- Perea, A., Meroño, J. y Aguilera, M. (2009). Clasificación orientada a objetos en fotografías aéreas digitales para la discriminación de usos del suelo. *Interciencia*, *34*(9), 612-616.
- Perilla, G. y Mas, J. (2020). Google Earth Engine (GEE): una poderosa herramienta que vincula el potencial de los datos masivos y la eficacia del procesamiento en la nube. *Investigaciones geográficas*, (101). <u>https://doi.org/10.14350/rig.59929</u>
- Phiri, D., Simwanda, M., Salekin, S., Nyirenda, V., Murayama, Y., y Ranagalage, M. (2020). Sentinel-2 Data for Land Cover/Use Mapping: A review. *Remote Sensing* 12,2291. doi:10.3390/rs12142291
- Piao, Y., Jeong, S., Park, S. y Lee, D. (2021). Analysis of Land Use and Land Cover Change Using Time-Series Data and Random Forest in North Korea. *Remote Sensing*, 13(17), 3501. https://doi.org/10.3390/rs13173501
- Planet (2021). Programa de datos de NICFI. Guía de usuario. Terceras partes (Usuarios Nivel 1). NICFI_User_Guide_v2_ES_Proofed_2.docx (planet.com)

- Pragunanti, T., Nababan, B., Madduppa, H., y Kushardono, D. (2020). Accuracy assessment of several classification algorithms with and without hue saturation intensity input features on object analyses on benthic habitat mapping in the Pajenekang Island Waters, South Sulawesi. *IOP Conference Series: Earth and Environmental Science*, 429(1), 012044. https://doi.org/10.1088/1755-1315/429/1/012044
- Puerta, R., y Fajardo, R. (2022). Cobertura Boscosa al 2021 en la provincia Leoncio Prado, Perú. *The Biologist*, 20(1), 93–101. https://doi.org/10.24039/rtb20222011319
- Puerta, R. H., Esenarro, D., Minga, C., Rodriguez, C. y Aylas, C. (2021). Open-Access Geographic Sources And Data For The Study And Management Of Natural Resources. *Journal of Contemporary Issues in Business and Government*, 27(3), 849-857. https://doi.org/10.47750/cibg.2021.27.03.118
- Ramírez, M., Martínez, L., Montilla, M., Sarmiento, O., Lazo, J., y Díaz, S. (2020). Obtención de cobertura de tierras agrícolas en imágenes satelitales Sentinel-2 con inyección de imágenes de drones usando Random Forest en Google Earth Engine. *Revista de Teledetección*, 56, 49-68. https://doi.org/10.4995/raet.2020.14102
- Rodríguez, D., Sánchez, N., Domínguez, J. y Santa, C. (2015). *Cuestiones de Teledetección*. Editorial UNED.
- Salas, R., Barboza, E., y Oliva, M. (2014). Dinámica multitemporal de índices de deforestación en el distrito de Florida, departamento de Amazonas, Perú. *Revista Indes 2*(1): 18-27. doi:10.25127/indes.201401.002
- Sánchez, H. (2009). Aplicación del SIG en la caracterización y determinación de la causa de contaminación del agua subterránea en el centro poblado Castillo Grande. [Tesis de maestría, Universidad Nacional Agraria de la Selva]. Repositorio Institucional.
- Setiawan, F., Jiang, D., Hamzah, R., y Matsushita, B. (2022). Inland Water Trophic State Identification using Remote Sensing data and Machine Learning Approach. *IOP Conference Series: Earth and Environmental Science*, 1062(1), 012033. https://doi.org/10.1088/1755-1315/1062/1/012033
- Singh, A. (1989). Review Article Digital change detection techniques using remotely-sensed data. International Journal of Remote Sensing, 10(6), 989-1003. https://doi.org/10.1080/01431168908903939

- Subia, Y. (2020). Análisis multitemporal de cambio de cobertura vegetal y uso de suelos en el Parque Nacional Bahuaja Sonene y su zona de amortiguamiento. [Tesis de grado, Universidad Nacional del Altiplano]. Repositorio Institucional.
- Suquilanda, C. (2020). Estimación del grado de severidad causada por un incendio sobre cobertura forestal en el sector Irquis (Azuay), utilizando técnicas de teledetección.
 [Tesis de Grado, Universidad de Cuenca]. Repositorio Institucional.
- Tarazona, Y. (09 de setiembre de 2019). Algoritmos de machine learning en la teledetección.

 APROGIS.
 https://aprogis.com/blogs/algoritmos-de-machine-learning-en-lateledeteccion

 lateledeteccion
 https://aprogis.com/blogs/algoritmos-de-machine-learning-en-lateledeteccion
- Wolters, S., Söderström, M., Piikki, K., Reese, H., y Stenberg, M. (2021). Upscaling proximal sensor N-uptake predictions in winter wheat (*Triticum aestivum* L.) with Sentinel-2 satellite data for use in a decision support system. *Precision Agriculture*, 22(4), 1263-1283. <u>https://doi.org/10.1007/s11119-020-09783-7</u>
- Yang, W., John, V. O., Zhao, X., Lu, H. y Knapp, K. R. (2016). Satellite Climate Data Records: Development, Applications, and Societal Benefits. *Remote Sensing*, 8(4), 331. https://doi.org/10.3390/rs8040331

ANEXOS

Anexo A. Tabla 6. Matriz de consistencia

	Análisis de la deforestación de los años 2016 y 2022 en el distrito Castillo Grande, Huánuco, Perú						
Problema general	Objetivos	Hipótesis	Variables de estudio	Dimensió n	Indicadores	Instrumento de medida	Metodología
	General	General					
	Analizar de la deforestación en el distrito Castillo Grande, Huánuco, Perú de los años 2016 y 2022	Es posible analizar la deforestación en el distrito Castillo Grande, Huánuco, Perú de los años 2016 y 2022					
	Específicos	Específicos					- Enfoque: cuantitativo
¿Cuánto varía el área deforestada durante los años 2016 y 2022 en el distrito Castillo Grande, Huánuco, Perú?	Evaluar la exactitud temática de la clasificación de los mapas de deforestación del distrito Castillo Grande, Huánuco, Perú de los años 2016 y 2022 con los algoritmos Support Vector Machine (SVM), Decision Tree (DT) y Random Forest (RF) en imágenes Sentinel 2 Estimar la superficie deforestada de los años 2016 y 2022 en el distrito Castillo	Uno de los 3 algoritmos de clasificación supervisada en los mapas de deforestación del distrito Castillo Grande de los años 2016 y 2022 tiene una exactitud temática alta. La deforestación del distrito Castillo Grande abarca gran parte del total	Deforestación	-Espacial -Temporal -Exactitud	Categorías de coberturas (ha): - Bosque - Deforestado - Hidrografía Cambios de cobertura (ha/año)	e -Ficha de observación - Matriz de cambio	 Tipo: aplicativo Nivel: descriptivo Método: deductivo (de lo general a específico) Diseño: No experimental longitudinal Población: Distrito Castillo Grande Técnica: Observación no experimental Instrumento: Ficha de observación. Técnicas de análisis de datos: se utilizará la estadística descriptiva, cuadros, figuras de Excel y mapas generados en ArcGie 10 5
	Grande, Huánuco, Perú	del área.			Exactitud global (%)		generados en mecho ro,o
	Cuantificar la tasa de	La deforestación en el				-Matriz de confusión	
	deforestación de los años	distrito Castillo Grande					
	2010 y 2022 en el distrito Castillo Grande Huánuco	ha sido en forma					
	Perú	ascendente					

Categoría	Bosque	Deforestado	Agua	Total	Exactitud del usuario
Bosque	A1	A2	A3	A1+A2+A3	EU1
Deforestado	B1	B2	B3	B1+B2+B3	EU2
Agua	C1	C2	C3	C1+C2+C3	EU3
Total	A1+B1+C1	A2+B2+C3	A3+B3+C3+		
Exactitud del productor	EP1	EP2	EP3		Exactitud global

Anexo B. Tabla 7. Matriz de confusión

Tabla 8. Puntos de validación para el algoritmo Support Vector Machine del año 2016.

Ν	Categoría	Este (m)	Norte (m)	Validación	Año
1	Bosque	385538,1068	8983098,051	Bosque	2016
2	Bosque	389131,637	8983837,715	Deforestado	2016
3	Bosque	386723,736	8978606,188	Deforestado	2016
4	Bosque	385314,7946	8981259,028	Deforestado	2016
5	Bosque	382184,2555	8986714,285	Bosque	2016
6	Bosque	388157,2948	8977832,132	Bosque	2016
7	Bosque	383913,0062	8983241,011	Bosque	2016
8	Bosque	388404,9488	8980149,812	Deforestado	2016
9	Bosque	387897,0785	8980527,793	Bosque	2016
10	Bosque	389272,1337	8973125,293	Bosque	2016
11	Bosque	388661,2301	8975286,122	Bosque	2016
12	Bosque	384581,2347	8988710,79	Deforestado	2016
13	Bosque	387842,9134	8983943,92	Bosque	2016
14	Bosque	381391,8827	8987848,273	Bosque	2016
15	Bosque	382836,0766	8986157,777	Bosque	2016
16	Bosque	386285,5562	8976484,1	Deforestado	2016
17	Bosque	386138,9457	8981707,737	Deforestado	2016
18	Bosque	389293,0563	8976920,54	Deforestado	2016
19	Bosque	380416,9346	8983972,943	Bosque	2016
20	Bosque	389546,7396	8977609,214	Deforestado	2016
21	Bosque	383578,1033	8986363,317	Bosque	2016
22	Bosque	388229,3482	8978892,123	Bosque	2016
23	Bosque	384633,626	8985918,816	Bosque	2016
24	Bosque	385278,1474	8984201,09	Bosque	2016
25	Bosque	383322,1077	8987520,77	Bosque	2016
26	Bosque	388936,9963	8983788,519	Bosque	2016
27	Bosque	386215,49	8986295,561	Bosque	2016
28	Bosque	384682,2631	8984359,72	Deforestado	2016
29	Bosque	384602,0244	8984847,191	Bosque	2016
30	Bosque	387717,5112	8987140,926	Bosque	2016
31	Bosque	387229,1861	8979167,387	Bosque	2016
32	Bosque	387647,7245	8974978,958	Bosque	2016
33	Bosque	383809,3876	8988005,27	Bosque	2016

34	Bosque	383541,5874	8982173,512	Bosque	2016
35	Bosque	380619,5458	8985410,761	Bosque	2016
36	Bosque	387762,7545	8974902,495	Bosque	2016
37	Bosque	385635,0946	8983194,929	Bosque	2016
38	Bosque	387184,742	8987063,564	Bosque	2016
39	Bosque	386730,9024	8984126,213	Bosque	2016
40	Bosque	385692,004	8985607,879	Bosque	2016
41	Bosque	385611,4745	8987078,263	Bosque	2016
42	Bosque	389099,1261	8979655,234	Deforestado	2016
43	Bosque	387695,6435	8979599,576	Bosque	2016
44	Bosque	387886,8642	8979078,025	Deforestado	2016
45	Bosque	381095,0893	8986919,908	Bosque	2016
46	Bosque	385780,8323	8979241,552	Deforestado	2016
47	Bosque	387445,5986	8974722,939	Bosque	2016
48	Bosque	386604,285	8982083,731	Bosque	2016
49	Bosque	386612,5778	8986192,86	Deforestado	2016
50	Deforestado	387634,7044	8978690,763	Bosque	2016
51	Deforestado	386892,5275	8987743,154	Deforestado	2016
52	Deforestado	385918,0845	8977224,76	Deforestado	2016
53	Deforestado	386184,6312	8977317,932	Deforestado	2016
54	Deforestado	382872,94	8985289,647	Deforestado	2016
55	Deforestado	380422,0013	8985091,349	Bosque	2016
56	Deforestado	388445,8331	8982183,151	Bosque	2016
57	Deforestado	387202,7049	8982212,298	Bosque	2016
58	Deforestado	389770,9529	8974612,576	Deforestado	2016
59	Deforestado	382350,5296	8984836,368	Bosque	2016
60	Deforestado	382825,7842	8987882,468	Deforestado	2016
61	Deforestado	388473,5028	8972096,576	Deforestado	2016
62	Deforestado	381142,2277	8989971,539	Deforestado	2016
63	Deforestado	385966,6153	8980570,276	Deforestado	2016
64	Deforestado	384362,7374	8988207,404	Deforestado	2016
65	Deforestado	388023,6213	8973520,597	Bosque	2016
66	Deforestado	387306,9138	8973996,81	Bosque	2016
67	Deforestado	388743,9473	8976560,457	Deforestado	2016
68	Deforestado	383718,5092	8984643,255	Deforestado	2016
69	Deforestado	389815,7432	8982404,202	Deforestado	2016
70	Deforestado	384695,2372	8984161,894	Deforestado	2016
71	Deforestado	389933,6286	8978859,793	Deforestado	2016
72	Deforestado	383279,6172	8988820,219	Deforestado	2016
73	Deforestado	389960,7806	8977195,077	Deforestado	2016
74	Deforestado	384982,3346	8985278,061	Bosque	2016
75	Deforestado	386832,2572	8981745,846	Bosque	2016
76	Deforestado	385910,9576	8984134,039	Deforestado	2016
77	Deforestado	385989,1734	8987416,244	Deforestado	2016
78	Deforestado	383498,1879	8984693,025	Bosque	2016
79	Deforestado	384413,7806	8986535,886	Bosque	2016
80	Deforestado	380694,1968	8985925,039	Deforestado	2016
81	Deforestado	387175,2422	8986666,098	Deforestado	2016

82	Deforestado	389665,1789	8983240,013	Deforestado	2016
83	Deforestado	388590,1317	8984147,266	Bosque	2016
84	Deforestado	387210,1264	8982150,979	Deforestado	2016
85	Deforestado	388607,2921	8978215,036	Deforestado	2016
86	Deforestado	383467,7695	8988481,542	Deforestado	2016
87	Deforestado	388478,614	8982398,644	Bosque	2016
88	Deforestado	388040,9674	8974335,534	Deforestado	2016
89	Deforestado	386526,5017	8986760,376	Bosque	2016
90	Deforestado	387890,4728	8973137,186	Deforestado	2016
91	Deforestado	388556,1798	8972490.235	Deforestado	2016
92	Deforestado	386438.6368	8987532.868	Deforestado	2016
93	Deforestado	388028.6085	8974011.474	Deforestado	2016
94	Deforestado	387626.9723	8986847.4	Deforestado	2016
95	Deforestado	389677.4207	8976869.902	Deforestado	2016
96	Deforestado	387792.4755	8972230.548	Bosque	2016
97	Deforestado	380067.5266	8984552.87	Bosque	2016
98	Deforestado	383158,9444	8983714.122	Deforestado	2016
99	Hidrografía	388602.3297	8979061.016	Bosque	2016
100	Hidrografía	387370.8035	8988286.023	Hidrografía	2016
101	Hidrografía	389838,7936	8973657.827	Hidrografía	2016
102	Hidrografía	388418.7027	8986257.724	Hidrografía	2016
103	Hidrografía	389351.4703	8983969.167	Hidrografía	2016
104	Hidrografía	390056.1351	8981944.125	Hidrografía	2016
105	Hidrografía	388942.4374	8984688.378	Hidrografía	2016
106	Hidrografía	389486.2007	8983877.195	Hidrografía	2016
107	Hidrografía	385456.7309	8988625.271	Hidrografía	2016
108	Hidrografía	389874.7195	8976710.659	Hidrografía	2016
109	Hidrografía	389926,888	8977631,813	Hidrografía	2016
110	Hidrografía	388441.0056	8986285,302	Hidrografía	2016
111	Hidrografía	387351,1635	8988206,429	Hidrografía	2016
112	Hidrografía	388715,1528	8985220,948	Hidrografía	2016
113	Hidrografía	389944,0965	8975347.93	Hidrografía	2016
114	Hidrografía	384738,7218	8989076.087	Hidrografía	2016
115	Hidrografía	389004,1444	8984614,274	Hidrografía	2016
116	Hidrografía	388040,1621	8987190,868	Hidrografía	2016
117	Hidrografía	390317,2613	8981303,298	Hidrografía	2016
118	Hidrografía	390372,8046	8979423,645	Hidrografía	2016
119	Hidrografía	386895,4431	8988497,561	Hidrografía	2016
120	Hidrografía	389742,3299	8972075,405	Hidrografía	2016
121	Hidrografía	390240,2971	8980626,938	Hidrografía	2016
122	Hidrografía	386028,0897	8988420,831	Hidrografía	2016
123	Hidrografía	388500,414	8985640,168	Hidrografía	2016
124	Hidrografía	385539,5336	8988562,845	Hidrografía	2016
125	Hidrografía	388524,7191	8985952,765	Hidrografía	2016
126	Hidrografía	384359,9606	8989000,196	Hidrografía	2016
127	Hidrografía	389913,6696	8976920,779	Hidrografía	2016
128	Hidrografía	390036,865	8974309,019	Hidrografía	2016
129	Hidrografía	388536,2774	8985699,545	Deforestado	2016

	130	Hidrografía	389794,5757	8978081,323	Hidrografía	2016
	131	Hidrografía	388723,1636	8985261,091	Hidrografía	2016
	132	Hidrografía	386004,003	8988421,518	Hidrografía	2016
	133	Hidrografía	390423,2734	8979849,901	Hidrografía	2016
	134	Hidrografía	389707,0797	8976374,71	Hidrografía	2016
	135	Hidrografía	389817,3083	8973542,879	Hidrografía	2016
	136	Hidrografía	389950,9271	8975512	Hidrografía	2016
	137	Hidrografía	388047,9626	8983815,641	Bosque	2016
	138	Hidrografía	389751,2828	8982818,706	Hidrografía	2016
	139	Hidrografía	390095,8879	8981859,856	Hidrografía	2016
	140	Hidrografía	389904,6073	8973361,002	Hidrografía	2016
-	141	Hidrografía	390101,9806	8973894,633	Hidrografía	2016
	142	Hidrografía	382143,1634	8990024,437	Hidrografía	2016
-	143	Hidrografía	390441,2807	8979946,485	Hidrografía	2016
	144	Hidrografía	390099,5349	8974187,486	Hidrografía	2016
	145	Hidrografía	389259,5232	8971035,837	Hidrografía	2016
-	146	Hidrografía	389986,5163	8975788,183	Hidrografía	2016
	147	Hidrografía	390275,6427	8980518,032	Hidrografía	2016

Anexo D.

Tabla 9. Puntos de validación para el algoritmo Decision Tree del año 2016.

Ν	Categoría	Este (m)	Norte (m)	Validación	Año
1	Bosque	387236,7	8983076,6	Bosque	2016
2	Bosque	382050,48	8988453	Bosque	2016
3	Bosque	382515,54	8984800,3	Bosque	2016
4	Bosque	389718,78	8979489,8	Deforestado	2016
5	Bosque	382601,54	8983384,6	Bosque	2016
6	Bosque	385973	8976487,7	Bosque	2016
7	Bosque	389202,41	8979901,8	Deforestado	2016
8	Bosque	389845,13	8980377,9	Bosque	2016
9	Bosque	387216,79	8972690,6	Deforestado	2016
10	Bosque	385703,76	8985461	Deforestado	2016
11	Bosque	383610,31	8985934,4	Bosque	2016
12	Bosque	380397,44	8987371,2	Bosque	2016
13	Bosque	382395,8	8986077,3	Bosque	2016
14	Bosque	389157,07	8971610,7	Deforestado	2016
15	Bosque	387774,7	8972939,9	Deforestado	2016
16	Bosque	388332,81	8985577,7	Bosque	2016
17	Bosque	385854,56	8983960,8	Bosque	2016
18	Bosque	381774,11	8989084,8	Bosque	2016
19	Bosque	387108,16	8981747,9	Bosque	2016
20	Bosque	387580,22	8975660,1	Bosque	2016
21	Bosque	389519,15	8982287,4	Deforestado	2016
22	Bosque	381799,66	8990133,2	Bosque	2016
23	Bosque	388049,9	8979923,6	Deforestado	2016
24	Bosque	383909,06	8982616,3	Bosque	2016

25	Bosque	389906,28	8979094,8	Deforestado	2016
26	Bosque	387406,93	8977483,5	Deforestado	2016
27	Bosque	384043,03	8982782	Deforestado	2016
28	Bosque	381000,87	8985351,9	Bosque	2016
29	Bosque	389268,07	8974798,9	Bosque	2016
30	Bosque	384196,35	8987815	Bosque	2016
31	Bosque	385439,34	8980387,7	Bosque	2016
32	Bosque	384592,84	8984973,6	Bosque	2016
33	Bosque	383926,3	8988413,2	Deforestado	2016
34	Bosque	387555,08	8986784,8	Bosque	2016
35	Bosque	386089,99	8980893,8	Bosque	2016
36	Bosque	387533,84	8974084,9	Deforestado	2016
37	Bosque	386880,93	8981955,5	Bosque	2016
38	Bosque	385470,75	8983899,6	Bosque	2016
39	Bosque	381806,8	8985680,2	Bosque	2016
40	Bosque	386281,26	8977520	Bosque	2016
41	Bosque	387986	8980835,9	Bosque	2016
42	Bosque	386624,9	8981224,8	Deforestado	2016
43	Bosque	386346,56	8985398,4	Deforestado	2016
44	Bosque	388986,84	8972327,3	Bosque	2016
45	Bosque	384503,98	8986696,6	Bosque	2016
46	Bosque	383642,96	8987138,5	Bosque	2016
47	Bosque	380553,82	8987421,1	Bosque	2016
48	Bosque	382166,03	8984520,1	Bosque	2016
49	Bosque	382146,32	8988582,6	Deforestado	2016
50	Deforestado	388228,87	8982472,1	Bosque	2016
51	Deforestado	388835,11	8973356,8	Deforestado	2016
52	Deforestado	387779,01	8987593,8	Deforestado	2016
53	Deforestado	389201,04	8974242	Deforestado	2016
54	Deforestado	388104,91	8971786,7	Deforestado	2016
55	Deforestado	386752,7	8987428,2	Deforestado	2016
56	Deforestado	381545,24	8989918,3	Bosque	2016
57	Deforestado	389403,77	8983630,9	Hidrografía	2016
58	Deforestado	383784,68	8984513,2	Deforestado	2016
59	Deforestado	387287,41	8987649	Deforestado	2016
60	Deforestado	389211,4	8973816,1	Deforestado	2016
61	Deforestado	385558,39	8982902,2	Deforestado	2016
62	Deforestado	385061,97	8988908,8	Deforestado	2016
63	Deforestado	389317,71	8974418,8	Deforestado	2016
64	Deforestado	389776,7	8973703,4	Hidrografía	2016
65	Deforestado	386670,33	8981313,5	Deforestado	2016
66	Deforestado	385364,13	8984873,8	Deforestado	2016
67	Deforestado	383511,24	8987069	Bosque	2016
68	Deforestado	389805,78	8973959	Deforestado	2016

69	Deforestado	387157,53	8982682,8	Deforestado	2016
70	Deforestado	385979,32	8987734	Deforestado	2016
71	Deforestado	385192,11	8982615,3	Bosque	2016
72	Deforestado	382730,79	8984629,6	Deforestado	2016
73	Deforestado	383303,86	8982373,7	Deforestado	2016
74	Deforestado	388160,17	8983382,4	Deforestado	2016
75	Deforestado	382452,79	8988693,3	Deforestado	2016
76	Deforestado	383047,33	8984233,4	Bosque	2016
77	Deforestado	389597,3	8972173,1	Deforestado	2016
78	Deforestado	387000,95	8978477,3	Deforestado	2016
79	Deforestado	382857,34	8989035,4	Deforestado	2016
80	Deforestado	387950,17	8972687	Bosque	2016
81	Deforestado	386872,96	8983804,7	Deforestado	2016
82	Deforestado	383237,49	8982953,8	Bosque	2016
83	Deforestado	387111,87	8982339	Bosque	2016
84	Deforestado	384051,79	8985770,2	Deforestado	2016
85	Deforestado	382211,29	8984691,9	Bosque	2016
86	Deforestado	389482,09	8973385,8	Deforestado	2016
87	Deforestado	387306,2	8986338,3	Deforestado	2016
88	Deforestado	384208,25	8982633,7	Deforestado	2016
89	Deforestado	386448,54	8977929,7	Deforestado	2016
90	Deforestado	387254,21	8974013,6	Deforestado	2016
91	Deforestado	384361,58	8988682,6	Deforestado	2016
92	Deforestado	386990,65	8972877,7	Deforestado	2016
93	Deforestado	385752,85	8988230,7	Deforestado	2016
94	Deforestado	385678,1	8981776,2	Deforestado	2016
95	Deforestado	386649,21	8983264,2	Deforestado	2016
96	Deforestado	388864,24	8983498,3	Deforestado	2016
97	Deforestado	383728,51	8987516,5	Bosque	2016
98	Deforestado	383007,9	8983572,7	Deforestado	2016
99	Hidrografía	388610,95	8985540	Hidrografía	2016
100	Hidrografía	389825,94	8973525,7	Hidrografía	2016
101	Hidrografía	389947,12	8973913,9	Hidrografía	2016
102	Hidrografía	390039,35	8972653,2	Hidrografía	2016
103	Hidrografía	386941,23	8988512,4	Hidrografía	2016
104	Hidrografía	384563,53	8989225,1	Hidrografía	2016
105	Hidrografía	390240,08	8980595,1	Hidrografía	2016
106	Hidrografía	387146,93	8988450,7	Hidrografía	2016
107	Hidrografía	389940,08	8975689,1	Hidrografía	2016
108	Hidrografía	390288,59	8981277	Hidrografía	2016
109	Hidrografía	389594,08	8971895,9	Hidrografía	2016
110	Hidrografía	390062,69	8981914,7	Hidrografía	2016
111	Hidrografía	389721,14	8972094,7	Hidrografía	2016
112	Hidrografía	386097,46	8988387,4	Hidrografía	2016

113	Hidrografía	389845,95	8976122,2	Hidrografía	2016
114	Hidrografía	384599,27	8989214,6	Hidrografía	2016
115	Hidrografía	386020,13	8988335,1	Hidrografía	2016
116	Hidrografía	388819,39	8985176,3	Hidrografía	2016
117	Hidrografía	389940,64	8974511,6	Hidrografía	2016
118	Hidrografía	385642,86	8988391,3	Hidrografía	2016
119	Hidrografía	389884,03	8973930	Hidrografía	2016
120	Hidrografía	384285,81	8989021,8	Hidrografía	2016
121	Hidrografía	385765,42	8988372,4	Hidrografía	2016
122	Hidrografía	389973,31	8975534,9	Hidrografía	2016
123	Hidrografía	390359,03	8979597,3	Hidrografía	2016
124	Hidrografía	386620,21	8988386,5	Hidrografía	2016
125	Hidrografía	389831,33	8977903,2	Hidrografía	2016
126	Hidrografía	384347,25	8989090,9	Hidrografía	2016
127	Hidrografía	387187,41	8988340	Hidrografía	2016
128	Hidrografía	388331,5	8985946,6	Hidrografía	2016
129	Hidrografía	384432,41	8989095,4	Hidrografía	2016
130	Hidrografía	388028,87	8987197	Hidrografía	2016
131	Hidrografía	390009,54	8978834,1	Hidrografía	2016
132	Hidrografía	389851,21	8973374,8	Hidrografía	2016
133	Hidrografía	389437,68	8971597,5	Hidrografía	2016
134	Hidrografía	390292,92	8980665,5	Hidrografía	2016
135	Hidrografía	390267,25	8980771	Hidrografía	2016
136	Hidrografía	389997,32	8976833,7	Hidrografía	2016
137	Hidrografía	389931,03	8975150,6	Hidrografía	2016
138	Hidrografía	389806,59	8982799	Hidrografía	2016
139	Hidrografía	390303,81	8981488,8	Hidrografía	2016
140	Hidrografía	389946,07	8974611,2	Hidrografía	2016
141	Hidrografía	384624,88	8989276,6	Hidrografía	2016
142	Hidrografía	388948,29	8984880,5	Hidrografía	2016
143	Hidrografía	389930,24	8973449,2	Hidrografía	2016
144	Hidrografía	387213,35	8988332,7	Hidrografía	2016
145	Hidrografía	384605,05	8989225,8	Hidrografía	2016
146	Hidrografía	390485,08	8979703,5	Hidrografía	2016
147	Hidrografía	390031,41	8981994,1	Hidrografía	2016

Anexo E. Tabla 10. Puntos de validación para el algoritmo Random Forest del año 2016.

Ν	Categoría	Este (m)	Norte (m)	Validación	Año
1	Bosque	389405,84	8983298,4	Hidrografía	2016
2	Bosque	384374,9	8982864,8	Bosque	2016
3	Bosque	386293,78	8978244,7	Bosque	2016
4	Bosque	381191,01	8989151	Bosque	2016
5	Bosque	384909,36	8983499,3	Bosque	2016

6	Bosque	382025,54	8984489,9	Bosque	2016
7	Bosque	384259,74	8982124,2	Bosque	2016
8	Bosque	388109,12	8982029,4	Deforestado	2016
9	Bosque	386160,45	8980564,7	Bosque	2016
10	Bosque	382805,42	8983773,9	Bosque	2016
11	Bosque	386112,68	8975967,3	Bosque	2016
12	Bosque	383297,59	8987981,7	Bosque	2016
13	Bosque	388262,11	8972222,6	Bosque	2016
14	Bosque	386206,95	8986653,3	Deforestado	2016
15	Bosque	387036,56	8985238,4	Deforestado	2016
16	Bosque	382095,67	8986300,2	Bosque	2016
17	Bosque	380935,79	8986643,7	Bosque	2016
18	Bosque	389104,88	8981341,9	Bosque	2016
19	Bosque	385110,77	8979558,6	Bosque	2016
20	Bosque	381261,25	8989229,9	Bosque	2016
21	Bosque	387624,21	8973175,3	Bosque	2016
22	Bosque	383674,87	8987191,8	Bosque	2016
23	Bosque	384272,88	8983628,6	Bosque	2016
24	Bosque	383893,51	8988159,8	Bosque	2016
25	Bosque	385123,08	8982482	Bosque	2016
26	Bosque	387130	8980680,3	Bosque	2016
27	Bosque	385932,81	8982940,9	Bosque	2016
28	Bosque	387020,49	8981252,3	Bosque	2016
29	Bosque	380436,57	8986738,6	Deforestado	2016
30	Bosque	387579,02	8981719,2	Bosque	2016
31	Bosque	389202,25	8983829,1	Bosque	2016
32	Bosque	386827,15	8973003,6	Bosque	2016
33	Bosque	387705,49	8982013,2	Bosque	2016
34	Bosque	382801,36	8988185,2	Bosque	2016
35	Bosque	383991,52	8982688,1	Bosque	2016
36	Bosque	384645,12	8988111,2	Bosque	2016
37	Bosque	383409,16	8987751,5	Deforestado	2016
38	Bosque	389075,64	8983536,2	Deforestado	2016
39	Bosque	387527,99	8980133,6	Deforestado	2016
40	Bosque	386982,1	8976174	Bosque	2016
41	Bosque	382061,36	8988389,4	Bosque	2016
42	Bosque	386504,96	8977352,2	Bosque	2016
43	Bosque	385110,76	8986256,6	Bosque	2016
44	Bosque	386235,43	8977400,6	Bosque	2016
45	Bosque	381194,57	8986018,6	Bosque	2016
46	Bosque	389252,05	8978791,7	Bosque	2016
47	Bosque	386343,75	8977240,7	Bosque	2016
48	Bosque	381395,45	8984935,5	Bosque	2016

49	Bosque	389925,84	8979803,9	Bosque	2016
50	Deforestado	385217,67	8981672,2	Bosque	2016
51	Deforestado	384476,84	8986701,3	Deforestado	2016
52	Deforestado	381848,27	8983848,5	Deforestado	2016
53	Deforestado	380329,15	8986724,8	Deforestado	2016
54	Deforestado	386930,6	8977069	Deforestado	2016
55	Deforestado	389943,58	8973755,6	Deforestado	2016
56	Deforestado	389598,04	8974703	Deforestado	2016
57	Deforestado	389194,12	8973414,4	Deforestado	2016
58	Deforestado	383791,05	8987127,6	Deforestado	2016
59	Deforestado	388492,96	8971295,5	Deforestado	2016
60	Deforestado	385808,03	8981004,7	Deforestado	2016
61	Deforestado	381104,83	8985802,3	Bosque	2016
62	Deforestado	389193,03	8973394,5	Deforestado	2016
63	Deforestado	388192,44	8977123,7	Deforestado	2016
64	Deforestado	389561,91	8972183,8	Deforestado	2016
65	Deforestado	388941,3	8976759,3	Deforestado	2016
66	Deforestado	388081,08	8983080,4	Bosque	2016
67	Deforestado	381858,72	8986897,6	Deforestado	2016
68	Deforestado	383397,16	8983689,2	Bosque	2016
69	Deforestado	390436,85	8980049,3	Deforestado	2016
70	Deforestado	385670,38	8988455,5	Deforestado	2016
71	Deforestado	389908,41	8977849,1	Hidrografía	2016
72	Deforestado	384102,34	8981255,5	Deforestado	2016
73	Deforestado	388671,07	8973695,1	Deforestado	2016
74	Deforestado	387730,26	8980920,9	Deforestado	2016
75	Deforestado	382337,79	8983929,3	Deforestado	2016
76	Deforestado	385390,23	8987983,3	Deforestado	2016
77	Deforestado	380267,15	8986214,3	Deforestado	2016
78	Deforestado	384093,58	8989037,2	Deforestado	2016
79	Deforestado	387648,2	8987678,5	Deforestado	2016
80	Deforestado	386965,93	8987321,3	Deforestado	2016
81	Deforestado	389848,82	8978945,5	Deforestado	2016
82	Deforestado	382962,64	8983529	Deforestado	2016
83	Deforestado	387002,93	8978501	Deforestado	2016
84	Deforestado	386411,71	8977555	Bosque	2016
85	Deforestado	381901,6	8985390,7	Deforestado	2016
86	Deforestado	386466,41	8983639,9	Deforestado	2016
87	Deforestado	388128,96	8971439,4	Deforestado	2016
88	Deforestado	390198,27	8979196,9	Deforestado	2016
89	Deforestado	389004,66	8974426,7	Deforestado	2016
90	Deforestado	387802,79	8972044,3	Bosque	2016
91	Deforestado	388802,86	8972861,6	Deforestado	2016

92	Deforestado	385337,03	8988060,8	Deforestado	2016
93	Deforestado	386640,98	8986322,8	Deforestado	2016
94	Deforestado	387575,28	8987518,8	Deforestado	2016
95	Deforestado	383221,14	8981886,7	Deforestado	2016
96	Deforestado	387522,96	8986133,7	Deforestado	2016
97	Deforestado	388269	8977516,9	Deforestado	2016
98	Deforestado	389369,93	8983026,2	Deforestado	2016
99	Hidrografía	387037,99	8988386,9	Hidrografía	2016
100	Hidrografía	388517,27	8985502,7	Hidrografía	2016
101	Hidrografía	389986,01	8975968,4	Hidrografía	2016
102	Hidrografía	389998,97	8982068	Hidrografía	2016
103	Hidrografía	387135,5	8988493,8	Hidrografía	2016
104	Hidrografía	385342,05	8988636,1	Hidrografía	2016
105	Hidrografía	389867,66	8977803,6	Hidrografía	2016
106	Hidrografía	389943,98	8975442,5	Hidrografía	2016
107	Hidrografía	389916,06	8977778,1	Hidrografía	2016
108	Hidrografía	389426,04	8983991,5	Hidrografía	2016
109	Hidrografía	389919,22	8978734,1	Hidrografía	2016
110	Hidrografía	388710,41	8985399,3	Hidrografía	2016
111	Hidrografía	390061,1	8977032,7	Hidrografía	2016
112	Hidrografía	389932,07	8977732,4	Hidrografía	2016
113	Hidrografía	384705,42	8989253,4	Hidrografía	2016
114	Hidrografía	388862,1	8985091	Hidrografía	2016
115	Hidrografía	389860,28	8973431	Hidrografía	2016
116	Hidrografía	387026,09	8988366	Hidrografía	2016
117	Hidrografía	389927,69	8976074,6	Hidrografía	2016
118	Hidrografía	389930,77	8975486,2	Hidrografía	2016
119	Hidrografía	389777,94	8976573,1	Hidrografía	2016
120	Hidrografía	390408,05	8979967,5	Hidrografía	2016
121	Hidrografía	385498,31	8988525	Hidrografía	2016
122	Hidrografía	390368,19	8979494,2	Hidrografía	2016
123	Hidrografía	389837,28	8976721,1	Hidrografía	2016
124	Hidrografía	389071,1	8984493,6	Hidrografía	2016
125	Hidrografía	389362,38	8971403,5	Hidrografía	2016
126	Hidrografía	389732,88	8976403,4	Hidrografía	2016
127	Hidrografía	384655,85	8989205,6	Hidrografía	2016
128	Hidrografía	389770,64	8972165,9	Hidrografía	2016
129	Hidrografía	390398,93	8979935,9	Hidrografía	2016
130	Hidrografía	388464,64	8985680,7	Hidrografía	2016
131	Hidrografía	390266,39	8981345,3	Hidrografía	2016
132	Hidrografía	389983,13	8982170,9	Hidrografía	2016
133	Hidrografía	386941,85	8988495	Hidrografía	2016
134	Hidrografía	389048,62	8984507,7	Hidrografía	2016

135	Hidrografía	389615,97	8977633,7	Hidrografía	2016
136	Hidrografía	385431,09	8988524,8	Hidrografía	2016
137	Hidrografía	389841,87	8978352,9	Hidrografía	2016
138	Hidrografía	389798,11	8976617	Hidrografía	2016
139	Hidrografía	389875,57	8977827,1	Hidrografía	2016
140	Hidrografía	390284,05	8980365,4	Hidrografía	2016
141	Hidrografía	389785,29	8972149,3	Hidrografía	2016
142	Hidrografía	389844,3	8973872,7	Hidrografía	2016
143	Hidrografía	389972,57	8975819	Hidrografía	2016
144	Hidrografía	389689,06	8976352,2	Hidrografía	2016
145	Hidrografía	388562,47	8986038,6	Hidrografía	2016
146	Hidrografía	387303,29	8988248,2	Hidrografía	2016
147	Hidrografía	389744,11	8976517,5	Hidrografía	2016

Tabla 11. Puntos de validación para el algoritmo Support Vector Machine del año 2022.

Ν	Categoría	Este (m)	Norte (m)	Validación	Año
1	Bosque	384892,135	8977538,44	Bosque	2022
2	Bosque	386531,488	8982061,12	Bosque	2022
3	Bosque	387250,453	8978760,09	Bosque	2022
4	Bosque	389755,782	8973918,84	Deforestado	2022
5	Bosque	389277,068	8979555,05	Bosque	2022
6	Bosque	386795,637	8982183,92	Deforestado	2022
7	Bosque	383287,524	8984697,04	Bosque	2022
8	Bosque	388882,142	8983442,59	Bosque	2022
9	Bosque	383348,936	8984923,03	Bosque	2022
10	Bosque	384084,665	8983738,81	Deforestado	2022
11	Bosque	389270,16	8981001,75	Bosque	2022
12	Bosque	383616,605	8981931,1	Bosque	2022
13	Bosque	380933,53	8986940,7	Bosque	2022
14	Bosque	387713,243	8982212,16	Bosque	2022
15	Bosque	382558,985	8989241,04	Bosque	2022
16	Bosque	381484,851	8990510,86	Bosque	2022
17	Bosque	386811,492	8984597,73	Bosque	2022
18	Bosque	386135,591	8983351,85	Bosque	2022
19	Bosque	384621,384	8986481,42	Bosque	2022
20	Bosque	387357,318	8982140,21	Bosque	2022
21	Bosque	389148,706	8980085,25	Bosque	2022
22	Bosque	388854,495	8981718,64	Bosque	2022
23	Bosque	387190,382	8986098,37	Deforestado	2022
24	Bosque	385444,127	8984053,43	Deforestado	2022
25	Bosque	385973,157	8976774,05	Bosque	2022
26	Bosque	385523,475	8977484,7	Bosque	2022
27	Bosque	386548,785	8980370,38	Deforestado	2022

28	Bosque	388127,362	8980242,51	Deforestado	2022
29	Bosque	388261,302	8977689,01	Bosque	2022
30	Bosque	387920,74	8983682,91	Deforestado	2022
31	Bosque	382113,551	8990091,42	Deforestado	2022
32	Bosque	388880,004	8977092,14	Bosque	2022
33	Bosque	383531,579	8982388,3	Bosque	2022
34	Bosque	388416,948	8985921,63	Bosque	2022
35	Bosque	384627,146	8980202,64	Bosque	2022
36	Bosque	381697,089	8984616,11	Bosque	2022
37	Bosque	386897,394	8979618,9	Deforestado	2022
38	Bosque	388914,989	8971923,68	Bosque	2022
39	Bosque	380520,241	8987333,51	Bosque	2022
40	Bosque	381968,87	8984260,73	Bosque	2022
41	Bosque	385594,152	8977045,3	Bosque	2022
42	Bosque	385145,982	8986102,18	Bosque	2022
43	Bosque	379800,334	8985765,89	Bosque	2022
44	Bosque	386668,88	8984278,62	Bosque	2022
45	Bosque	386447,27	8981835,28	Bosque	2022
46	Bosque	386792,861	8977458,94	Deforestado	2022
47	Bosque	388439,094	8979923,06	Deforestado	2022
48	Bosque	386471,199	8976741,94	Bosque	2022
49	Bosque	389726,374	8983071,53	Deforestado	2022
50	Deforestado	389406,685	8980818,62	Deforestado	2022
51	Deforestado	389189,902	8976300,91	Deforestado	2022
52	Deforestado	386161,671	8982452,65	Deforestado	2022
53	Deforestado	387865,153	8986414,42	Deforestado	2022
54	Deforestado	386524,77	8987260,25	Bosque	2022
55	Deforestado	381147,7	8986178,65	Deforestado	2022
56	Deforestado	388984,933	8975008,94	Deforestado	2022
57	Deforestado	381768,098	8985969,31	Deforestado	2022
58	Deforestado	389041,774	8979870,64	Bosque	2022
59	Deforestado	388153,048	8982341,99	Deforestado	2022
60	Deforestado	383710,408	8986814,93	Bosque	2022
61	Deforestado	384945,344	8980446,11	Deforestado	2022
62	Deforestado	389211,365	8976227,75	Deforestado	2022
63	Deforestado	382699,414	8989290,54	Deforestado	2022
64	Deforestado	388770,873	8984686,49	Bosque	2022
65	Deforestado	388468,855	8984406,39	Bosque	2022
66	Deforestado	384824,867	8977084,1	Bosque	2022
67	Deforestado	387759,31	8982730,59	Bosque	2022
68	Deforestado	382555,528	8987323,72	Deforestado	2022
69	Deforestado	389144,053	8974106,18	Deforestado	2022
70	Deforestado	389640,665	8974218,7	Deforestado	2022
71	Deforestado	389118,082	8983287,61	Deforestado	2022

72	Deforestado	388266,634	8973362,57	Deforestado	2022
73	Deforestado	389843,466	8977066,16	Deforestado	2022
74	Deforestado	383575,352	8982333,74	Bosque	2022
75	Deforestado	385426,181	8982303,26	Bosque	2022
76	Deforestado	388614,818	8981872,22	Bosque	2022
77	Deforestado	388631,358	8984926,18	Bosque	2022
78	Deforestado	388458,955	8978649,38	Deforestado	2022
79	Deforestado	389089,643	8974309,74	Deforestado	2022
80	Deforestado	380971,192	8985293,13	Deforestado	2022
81	Deforestado	388541,331	8976242,8	Deforestado	2022
82	Deforestado	388966,022	8981102,57	Deforestado	2022
83	Deforestado	380210,221	8984226	Bosque	2022
84	Deforestado	385801,814	8981078,2	Deforestado	2022
85	Deforestado	387422,078	8975991,17	Deforestado	2022
86	Deforestado	389483,775	8981940,76	Bosque	2022
87	Deforestado	388805,25	8981302,81	Deforestado	2022
88	Deforestado	388838,917	8974565,72	Deforestado	2022
89	Deforestado	389732,065	8981490,11	Deforestado	2022
90	Deforestado	388669,215	8981246,91	Deforestado	2022
91	Deforestado	386596,916	8975381,02	Deforestado	2022
92	Deforestado	388053,518	8974108,35	Deforestado	2022
93	Deforestado	389257,578	8982718,62	Deforestado	2022
94	Deforestado	387783,555	8978632,5	Deforestado	2022
95	Deforestado	389228,957	8973281,49	Deforestado	2022
96	Deforestado	381098,238	8984564,1	Deforestado	2022
97	Deforestado	382496,252	8984567,79	Bosque	2022
98	Deforestado	384500,049	8981770,42	Deforestado	2022
99	Hidrografía	386520,375	8988304,33	Hidrografía	2022
100	Hidrografía	389920,526	8974514,54	Hidrografía	2022
101	Hidrografía	387961,669	8979676,91	Deforestado	2022
102	Hidrografía	385866,042	8988468,65	Hidrografía	2022
103	Hidrografía	387230,484	8988174,2	Hidrografía	2022
104	Hidrografía	389896,306	8975883,7	Hidrografía	2022
105	Hidrografía	388634,19	8985387,39	Hidrografía	2022
106	Hidrografía	384662,304	8988496,79	Hidrografía	2022
107	Hidrografía	388906,341	8984769,91	Hidrografía	2022
108	Hidrografía	388160,342	8983639,36	Bosque	2022
109	Hidrografía	389956,961	8978316	Hidrografía	2022
110	Hidrografía	389708,698	8977971,66	Hidrografía	2022
111	Hidrografía	389876,609	8978284,6	Hidrografía	2022
112	Hidrografía	385925,046	8988467,4	Hidrografía	2022
113	Hidrografía	388702,373	8985193,52	Hidrografía	2022
114	Hidrografía	388098,602	8975090,02	Bosque	2022
115	Hidrografía	383716,126	8988737,2	Hidrografía	2022

116	Hidrografía	390362,942	8980185,03	Hidrografía	2022
117	Hidrografía	389615,648	8977517,83	Hidrografía	2022
118	Hidrografía	389978,383	8982128,59	Hidrografía	2022
119	Hidrografía	383665,232	8988813,01	Hidrografía	2022
120	Hidrografía	385779,631	8988344,73	Hidrografía	2022
121	Hidrografía	389657,947	8983586,18	Hidrografía	2022
122	Hidrografía	389592,192	8983716,25	Hidrografía	2022
123	Hidrografía	389960,619	8979045,04	Hidrografía	2022
124	Hidrografía	389702,964	8976456,55	Hidrografía	2022
125	Hidrografía	389879,699	8974763,46	Hidrografía	2022
126	Hidrografía	390066,607	8981832,22	Hidrografía	2022
127	Hidrografía	389972,319	8975586,7	Hidrografía	2022
128	Hidrografía	390017,195	8982040,49	Hidrografía	2022
129	Hidrografía	388841,028	8985081,4	Hidrografía	2022
130	Hidrografía	388494,732	8986251,68	Hidrografía	2022
131	Hidrografía	388326,184	8986093,4	Hidrografía	2022
132	Hidrografía	389805,429	8977914,24	Hidrografía	2022
133	Hidrografía	384707,256	8988917,97	Hidrografía	2022
134	Hidrografía	385626,79	8988225,56	Hidrografía	2022
135	Hidrografía	384650,632	8988782,69	Hidrografía	2022
136	Hidrografía	386636,673	8988445,59	Hidrografía	2022
137	Hidrografía	389997,646	8977207,67	Hidrografía	2022
138	Hidrografía	385568,586	8988257,6	Hidrografía	2022
139	Hidrografía	390024,773	8982005,77	Hidrografía	2022
140	Hidrografía	388706,903	8979524,83	Deforestado	2022
141	Hidrografía	389059,009	8984579,46	Hidrografía	2022
142	Hidrografía	386279,665	8988153,33	Hidrografía	2022
143	Hidrografía	387988,681	8986942,63	Hidrografía	2022
144	Hidrografía	389786,252	8976256,21	Hidrografía	2022
145	Hidrografía	385797,276	8988429,91	Hidrografía	2022
146	Hidrografía	389942,761	8975203,17	Hidrografía	2022
147	Hidrografía	384549,278	8988514,97	Hidrografía	2022

Anexo G.

Tabla 12. Puntos de validación para el algoritmo Decision Tree del año 2022.

Ν	Categoría	Este (m)	Norte (m)	Validación	Año
1	Bosque	385069,168	8979678,84	Bosque	2022
2	Bosque	380563,782	8984256,12	Bosque	2022
3	Bosque	388564,46	8984375,66	Bosque	2022
4	Bosque	384928,732	8986164,3	Bosque	2022
5	Bosque	381880,592	8984736,35	Bosque	2022
6	Bosque	388957,781	8982658,83	Bosque	2022
7	Bosque	387343,107	8981688,53	Bosque	2022
8	Bosque	387127,046	8971969,59	Bosque	2022
9	Bosque	388804,589	8981651,26	Bosque	2022

10	Bosque	385597,065	8981822,92	Bosque	2022
11	Bosque	389092,913	8982796,45	Bosque	2022
12	Bosque	381028,827	8986370,36	Bosque	2022
13	Bosque	388861,115	8981408,82	Bosque	2022
14	Bosque	381844,31	8988618,4	Bosque	2022
15	Bosque	382633,221	8984058,91	Deforestado	2022
16	Bosque	384080,96	8981424,31	Bosque	2022
17	Bosque	386827,267	8975506,48	Bosque	2022
18	Bosque	388524,375	8980761,86	Bosque	2022
19	Bosque	386093,754	8986284,44	Bosque	2022
20	Bosque	387639,449	8984128,46	Bosque	2022
21	Bosque	386370,327	8985895,63	Bosque	2022
22	Bosque	386243,521	8980791,74	Bosque	2022
23	Bosque	384253,062	8984330,3	Bosque	2022
24	Bosque	387121,138	8976967,36	Bosque	2022
25	Bosque	385059,978	8986513,71	Bosque	2022
26	Bosque	385892,104	8982396,81	Bosque	2022
27	Bosque	384915,864	8987873,6	Deforestado	2022
28	Bosque	387695,455	8981522,53	Bosque	2022
29	Bosque	388344,008	8984532,54	Bosque	2022
30	Bosque	388778,067	8975309,18	Bosque	2022
31	Bosque	387992,105	8984098,26	Bosque	2022
32	Bosque	382557,258	8985419,89	Bosque	2022
33	Bosque	389860,688	8981152,21	Bosque	2022
34	Bosque	388422,332	8974974,75	Bosque	2022
35	Bosque	383605,719	8984078,93	Bosque	2022
36	Bosque	380433,113	8983806,2	Bosque	2022
37	Bosque	387768,977	8979813,94	Bosque	2022
38	Bosque	383377,888	8982281,16	Bosque	2022
39	Bosque	386653,669	8982551,45	Bosque	2022
40	Bosque	383255,509	8982978,34	Deforestado	2022
41	Bosque	385563,547	8977889,07	Bosque	2022
42	Bosque	389751,678	8979890,86	Bosque	2022
43	Bosque	387534,297	8983822,74	Bosque	2022
44	Bosque	389003,828	8978949,87	Deforestado	2022
45	Bosque	383150,638	8987099,18	Bosque	2022
46	Bosque	386613,271	8981739,29	Deforestado	2022
47	Bosque	387747,442	8986984,38	Bosque	2022
48	Bosque	387790,819	8972762,96	Bosque	2022
49	Bosque	382487,892	8989296,5	Deforestado	2022
50	Deforestado	390572,681	8979809,36	Deforestado	2022
51	Deforestado	386261,108	8985637,81	Deforestado	2022

52	Deforestado	388262,334	8972386,98	Deforestado	2022
53	Deforestado	385792,847	8984622,88	Deforestado	2022
54	Deforestado	386451,92	8984345,61	Deforestado	2022
55	Deforestado	383073,038	8988750,14	Deforestado	2022
56	Deforestado	390101,037	8981402,4	Deforestado	2022
57	Deforestado	388374,163	8977045,11	Deforestado	2022
58	Deforestado	386891,75	8987132,09	Deforestado	2022
59	Deforestado	386334,621	8977281,81	Bosque	2022
60	Deforestado	386948,78	8978622,83	Deforestado	2022
61	Deforestado	385478,493	8980871,93	Deforestado	2022
62	Deforestado	383939,021	8983752,63	Deforestado	2022
63	Deforestado	383509,18	8987851,89	Deforestado	2022
64	Deforestado	388319,003	8973023,55	Bosque	2022
65	Deforestado	389728,504	8973184,05	Deforestado	2022
66	Deforestado	383870,001	8988708,63	Deforestado	2022
67	Deforestado	383195,261	8988898,11	Deforestado	2022
68	Deforestado	382320,027	8988511,61	Deforestado	2022
69	Deforestado	383952,278	8987359,83	Deforestado	2022
70	Deforestado	387669,238	8974413,74	Deforestado	2022
71	Deforestado	385518,304	8984038,59	Deforestado	2022
72	Deforestado	384831,281	8982658,45	Deforestado	2022
73	Deforestado	389635,861	8972517,72	Deforestado	2022
74	Deforestado	381138,361	8984113,93	Bosque	2022
75	Deforestado	385404,493	8987754,46	Deforestado	2022
76	Deforestado	381522,269	8987275,37	Deforestado	2022
77	Deforestado	389926,688	8972922,47	Deforestado	2022
78	Deforestado	386762,854	8986801,14	Deforestado	2022
79	Deforestado	389076,849	8972071,02	Bosque	2022
80	Deforestado	389314,109	8977321,54	Deforestado	2022
81	Deforestado	389689,849	8978627,24	Deforestado	2022
82	Deforestado	381327,695	8985208,89	Bosque	2022
83	Deforestado	388213,895	8974521,62	Deforestado	2022
84	Deforestado	389654,996	8973002,24	Deforestado	2022
85	Deforestado	387795,389	8983484,13	Bosque	2022
86	Deforestado	388597,224	8973456,66	Deforestado	2022
87	Deforestado	384359,712	8982017,09	Deforestado	2022
88	Deforestado	383514,281	8985476,03	Deforestado	2022
89	Deforestado	389368,988	8977707,7	Deforestado	2022
90	Deforestado	382931,655	8985213.8	Deforestado	2022
91	Deforestado	389581,479	8973881.39	Deforestado	2022
92	Deforestado	381554.161	8986793.35	Deforestado	2022
93	Deforestado	383054.996	8988016.96	Deforestado	2022
94	Deforestado	389088.486	8978394.14	Bosque	2022
95	Deforestado	385304,002	8983882,16	Deforestado	2022
		,	,		
96	Deforestado	384893,557	8983826,61	Bosque	2022
-----	-------------	------------	------------	-------------	------
97	Deforestado	385273,235	8977750,7	Deforestado	2022
98	Deforestado	385860,034	8977494,91	Deforestado	2022
99	Hidrografía	389878,709	8978050,94	Hidrografía	2022
100	Hidrografía	390211,099	8981409,06	Hidrografía	2022
101	Hidrografía	386658,31	8988345,89	Hidrografía	2022
102	Hidrografía	390427,742	8979390,11	Hidrografía	2022
103	Hidrografía	390405,836	8979713,98	Hidrografía	2022
104	Hidrografía	389942,556	8972420,01	Hidrografía	2022
105	Hidrografía	384705,522	8988457,39	Hidrografía	2022
106	Hidrografía	386641,564	8988368,26	Hidrografía	2022
107	Hidrografía	387271,514	8988177,81	Hidrografía	2022
108	Hidrografía	384926,879	8988206,14	Hidrografía	2022
109	Hidrografía	389995,855	8977026,62	Hidrografía	2022
110	Hidrografía	389826,883	8978542,53	Hidrografía	2022
111	Hidrografía	386794,249	8988487,26	Hidrografía	2022
112	Hidrografía	388784,127	8985256,64	Hidrografía	2022
113	Hidrografía	387589,269	8974760,8	Bosque	2022
114	Hidrografía	389749,362	8976819,16	Hidrografía	2022
115	Hidrografía	389865,429	8974959,47	Hidrografía	2022
116	Hidrografía	389923,212	8975859,67	Hidrografía	2022
117	Hidrografía	385153,496	8988225,03	Hidrografía	2022
118	Hidrografía	388599,17	8985427,27	Hidrografía	2022
119	Hidrografía	389728,556	8976721,73	Hidrografía	2022
120	Hidrografía	389921,635	8975205,22	Hidrografía	2022
121	Hidrografía	390216,062	8981364,47	Hidrografía	2022
122	Hidrografía	384853,313	8988251,93	Hidrografía	2022
123	Hidrografía	388375,545	8985950,45	Hidrografía	2022
124	Hidrografía	390352,588	8979737,67	Hidrografía	2022
125	Hidrografía	384274,633	8989232,05	Hidrografía	2022
126	Hidrografía	389945,776	8973152,89	Hidrografía	2022
127	Hidrografía	389660,589	8971989	Hidrografía	2022
128	Hidrografía	390344,8	8980245,07	Hidrografía	2022
129	Hidrografía	390353,379	8979524,05	Hidrografía	2022
130	Hidrografía	387941,334	8986555,66	Hidrografía	2022
131	Hidrografía	384574,872	8988950,81	Hidrografía	2022
132	Hidrografía	388138,326	8975003,52	Bosque	2022
133	Hidrografía	389869,562	8977756,62	Hidrografía	2022
134	Hidrografía	385890,32	8988186,05	Hidrografía	2022
135	Hidrografía	390386,784	8980103,14	Hidrografía	2022
136	Hidrografía	388088,656	8986277,51	Hidrografía	2022
137	Hidrografía	383768,796	8988624,11	Hidrografía	2022
138	Hidrografía	389338,515	8983989,15	Hidrografía	2022
139	Hidrografía	389346,206	8971262,38	Hidrografía	2022

_

140	Hidrografía	390287,217	8980138,95	Hidrografía	2022
141	Hidrografía	386688,687	8988426,72	Hidrografía	2022
142	Hidrografía	385062,032	8988229,67	Hidrografía	2022
143	Hidrografía	389854,093	8977742,49	Hidrografía	2022
144	Hidrografía	390446,248	8979410,43	Hidrografía	2022
145	Hidrografía	388842,939	8985106,67	Hidrografía	2022
146	Hidrografía	387913,063	8986605,9	Hidrografía	2022
147	Hidrografía	388483,811	8985644,26	Hidrografía	2022

Anexo H.

Tabla 13. Puntos de validación para el algoritmo Random Forest del año 2022.

1 abia 13. 1	untos de vandae	<u>ion para ci a</u> igo	Manuoli Kanuoli	i i orest del allo	2022.
Ν	Categoría	Este (m)	Norte (m)	Validación	Año
1	Bosque	382390,627	8984096,77	Bosque	2022
2	Bosque	389831,815	8982651,75	Deforestado	2022
3	Bosque	380865,406	8986170,85	Bosque	2022
4	Bosque	387055,096	8977479,39	Bosque	2022
5	Bosque	387187,018	8980896,05	Bosque	2022
6	Bosque	383851,524	8982105,85	Bosque	2022
7	Bosque	380691,616	8984092,33	Bosque	2022
8	Bosque	386820,937	8977152,13	Bosque	2022
9	Bosque	381934,965	8990115,75	Bosque	2022
10	Bosque	384933,458	8979974,28	Bosque	2022
11	Bosque	389113,064	8978202,43	Bosque	2022
12	Bosque	389112,806	8978889,6	Bosque	2022
13	Bosque	387843,909	8981712,91	Bosque	2022
14	Bosque	389428,713	8980988,64	Bosque	2022
15	Bosque	387932,391	8981380,92	Bosque	2022
16	Bosque	389641,628	8978157,26	Bosque	2022
17	Bosque	387946,521	8979379,38	Deforestado	2022
18	Bosque	387125,422	8981415,32	Bosque	2022
19	Bosque	384756,733	8985310,93	Bosque	2022
20	Bosque	381420,242	8989558,63	Bosque	2022
21	Bosque	387233,174	8979906,35	Deforestado	2022
22	Bosque	389597,481	8982600,84	Bosque	2022
23	Bosque	387485,236	8979806,11	Bosque	2022
24	Bosque	388478,867	8984258,1	Bosque	2022
25	Bosque	380717,388	8987302,72	Bosque	2022
26	Bosque	380360,898	8984881,07	Bosque	2022
27	Bosque	387548,621	8985462,72	Bosque	2022
28	Bosque	387038,778	8984558,91	Deforestado	2022
29	Bosque	384828,949	8979490,91	Bosque	2022
30	Bosque	385369,843	8983022,45	Bosque	2022
31	Bosque	387361,254	8984456,27	Bosque	2022
32	Bosque	381398,098	8985022,68	Bosque	2022
33	Bosque	383148,955	8988265,81	Bosque	2022

34	Bosque	386801,169	8976859,02	Bosque	2022
35	Bosque	383121,711	8984365,3	Bosque	2022
36	Bosque	383822,408	8983501,73	Bosque	2022
37	Bosque	384211,126	8986196,58	Bosque	2022
38	Bosque	387715,768	8976116,09	Bosque	2022
39	Bosque	383318,762	8987420,13	Bosque	2022
40	Bosque	388914,231	8982649,6	Bosque	2022
41	Bosque	388460,094	8977498,67	Bosque	2022
42	Bosque	381676,428	8987426,92	Bosque	2022
43	Bosque	388227,814	8977667,7	Bosque	2022
44	Bosque	386829,585	8978351	Bosque	2022
45	Bosque	387015,154	8976563,85	Bosque	2022
46	Bosque	379561,808	8984991,82	Bosque	2022
47	Bosque	381216,772	8984260,76	Bosque	2022
48	Bosque	380617,706	8983869,9	Bosque	2022
49	Bosque	380583,54	8986203,28	Bosque	2022
50	Deforestado	383099,126	8985422,64	Deforestado	2022
51	Deforestado	386976,405	8985536,07	Deforestado	2022
52	Deforestado	387053,433	8982604,91	Deforestado	2022
53	Deforestado	388933,547	8980459,49	Deforestado	2022
54	Deforestado	382719,881	8988658,83	Deforestado	2022
55	Deforestado	385511,03	8983990,67	Deforestado	2022
56	Deforestado	384930,697	8982110,15	Deforestado	2022
57	Deforestado	385428,017	8980983,93	Deforestado	2022
58	Deforestado	387499,925	8976180,51	Bosque	2022
59	Deforestado	390246,815	8981725,39	Deforestado	2022
60	Deforestado	381621,748	8984510,4	Bosque	2022
61	Deforestado	389733,304	8981453,26	Deforestado	2022
62	Deforestado	385589,726	8982149,85	Deforestado	2022
63	Deforestado	387548,272	8973493,67	Bosque	2022
64	Deforestado	387156,621	8986493,45	Deforestado	2022
65	Deforestado	388425,862	8973512,55	Deforestado	2022
66	Deforestado	386420,183	8988103,17	Deforestado	2022
67	Deforestado	389742,378	8972421,22	Deforestado	2022
68	Deforestado	388276,488	8973981,09	Deforestado	2022
69	Deforestado	385204,817	8987544,96	Deforestado	2022
70	Deforestado	388995,047	8984264,7	Deforestado	2022
71	Deforestado	388857,316	8973922,96	Deforestado	2022
72	Deforestado	387067,279	8986126,19	Deforestado	2022
73	Deforestado	383518,149	8982814,09	Deforestado	2022
74	Deforestado	388934,989	8977150,22	Bosque	2022
75	Deforestado	385146,516	8988578,92	Deforestado	2022
76	Deforestado	389276,269	8973506,18	Deforestado	2022
77	Deforestado	389208,893	8980657,72	Deforestado	2022

78	Deforestado	381227,021	8985432,91	Deforestado	2022
79	Deforestado	385339,114	8980024,93	Deforestado	2022
80	Deforestado	386445,376	8977242,26	Deforestado	2022
81	Deforestado	388921,352	8980984,76	Deforestado	2022
82	Deforestado	387007,816	8974343,35	Deforestado	2022
83	Deforestado	388304,089	8976192,7	Bosque	2022
84	Deforestado	384393,769	8982887,94	Bosque	2022
85	Deforestado	384591,143	8987668,53	Deforestado	2022
86	Deforestado	386542,364	8988160,19	Deforestado	2022
87	Deforestado	389378,837	8973084,74	Deforestado	2022
88	Deforestado	389148,479	8973501,02	Deforestado	2022
89	Deforestado	386803,552	8983834,34	Deforestado	2022
90	Deforestado	388881,984	8981478,61	Deforestado	2022
91	Deforestado	386472,347	8977898,2	Deforestado	2022
92	Deforestado	389170,897	8974790,65	Deforestado	2022
93	Deforestado	389020,713	8977048,96	Deforestado	2022
94	Deforestado	381824,941	8988219,11	Deforestado	2022
95	Deforestado	384846,51	8987864,06	Deforestado	2022
96	Deforestado	385312,85	8980133,06	Deforestado	2022
97	Deforestado	382060,903	8987297,67	Deforestado	2022
98	Deforestado	381124,09	8989363,61	Deforestado	2022
99	Hidrografía	390042,528	8972897,78	Hidrografía	2022
100	Hidrografía	387913,073	8986435,07	Hidrografía	2022
101	Hidrografía	384340,85	8989270,99	Hidrografía	2022
102	Hidrografía	389872,068	8974700,84	Hidrografía	2022
103	Hidrografía	389743,013	8978018,4	Hidrografía	2022
104	Hidrografía	388930,666	8984640,62	Hidrografía	2022
105	Hidrografía	385015,933	8988254,29	Hidrografía	2022
106	Hidrografía	390325,96	8979394,27	Hidrografía	2022
107	Hidrografía	390340,428	8979558,66	Hidrografía	2022
108	Hidrografía	389697,767	8976530,42	Hidrografía	2022
109	Hidrografía	384179,223	8989266,8	Hidrografía	2022
110	Hidrografía	390403,934	8979658,82	Hidrografía	2022
111	Hidrografía	385163,486	8988219,53	Hidrografía	2022
112	Hidrografía	389842,011	8974840,19	Hidrografía	2022
113	Hidrografía	384591,726	8989135,46	Hidrografía	2022
114	Hidrografía	389816	8976250,77	Hidrografía	2022
115	Hidrografía	389982,549	8973071,37	Hidrografía	2022
116	Hidrografía	388544,012	8986046,69	Hidrografía	2022
117	Hidrografía	386641,516	8988333,17	Hidrografía	2022
118	Hidrografía	384406,748	8989235,98	Hidrografía	2022
119	Hidrografía	384114,753	8988589,22	Hidrografía	2022
120	Hidrografía	389872,026	8977754,02	Hidrografía	2022
121	Hidrografía	389811,125	8978194,65	Hidrografía	2022

122	Hidrografía	384235,236	8988648,62	Hidrografía	2022
123	Hidrografía	390060,285	8973671,38	Hidrografía	2022
124	Hidrografía	389869,626	8978145,62	Hidrografía	2022
125	Hidrografía	390028,847	8972918,44	Hidrografía	2022
126	Hidrografía	383992,336	8989130,74	Hidrografía	2022
127	Hidrografía	390355,404	8979614,14	Hidrografía	2022
128	Hidrografía	388354,32	8986221,62	Hidrografía	2022
129	Hidrografía	389308,029	8971155,39	Hidrografía	2022
130	Hidrografía	389280,829	8984149,59	Hidrografía	2022
131	Hidrografía	390292,463	8980072,31	Hidrografía	2022
132	Hidrografía	389963,67	8974559,25	Hidrografía	2022
133	Hidrografía	384611,147	8988794,22	Hidrografía	2022
134	Hidrografía	387183,856	8988411,35	Hidrografía	2022
135	Hidrografía	388548,975	8985552,23	Hidrografía	2022
136	Hidrografía	389935,821	8975408,04	Hidrografía	2022
137	Hidrografía	389497,664	8971715,21	Hidrografía	2022
138	Hidrografía	389660,773	8976643,45	Hidrografía	2022
139	Hidrografía	389984,027	8974442,97	Hidrografía	2022
140	Hidrografía	390386,225	8979703,59	Hidrografía	2022
141	Hidrografía	389652,819	8971940,14	Hidrografía	2022
142	Hidrografía	389917,055	8973383,12	Hidrografía	2022
143	Hidrografía	389017,5	8984539,12	Hidrografía	2022
144	Hidrografía	387948,167	8986350,04	Hidrografía	2022
145	Hidrografía	384587,096	8988448,83	Hidrografía	2022
146	Hidrografía	389873,845	8978731,04	Hidrografía	2022
147	Hidrografía	388020,813	8987228,33	Hidrografía	2022

ANEXOS

Anexo I. Panel Fotográfico

Figura 9. Validación en campo de categoría deforestado

Figura 10. Validación en campo

Figura 11. GPS, mapa y formato para la validación en campo

Figura 12. Validación con imágenes satelitales Planet.

Proyecto Editar Ver Capa Configuración Complementos Vectorial Báster Base de glatos Web Malla SCP Progesos Av	uda Q Mues	treo SVM 2022 Obietos Tota	iles: 147. Filtrados: 1-	7. Seleccionados:	1	- 0	X
: D 🗃 🖥 🖉 🖉 🖉 🖉 역 역 👯 역 속 👘 11 월 🖪 🖷 🖞 :		0		PREM			
····································	9 9 9 mm	* = E 123			* Actualizar	todo Actualizar lo s	eleccionado
🔍 🔟 🔱 💐 💿 Planet 🔞 🔘 Luis Fernando Saldana Salazar 🔹 🛈 🔹 💉		CID ^ Cat	Х	γ	Validacion	Año	*
Navegador 88	97	97 Deforestado	382496.251531	8984567.79072	Bosque	2022	1
G & Y & O	98	98 Deforestado	384500.048993	8981770.42208	Deforestado	2022	
Feveritos	99	99 Hidrografía	386520.375370	8988304.32764	Hidrografía	2022	
Closes perioding to the logis Digits - TELEDETECCIÓN-FOTOGE	100	100 Hidrografía	389920.525964	8974514.53851	Hidrografía	2022	
D\Trabajos papá miguel	101	101 Hidrografía	387961.669241	8979676.91314	Deforestado	2022	
Inicio del proyecto	102	102 Hidrografia	205056 041054	9099469 64640	Lidzoaraf(a	2022	
Inicio Constante and the second sec	A CONSTRUCT TOP	toz matograna	303000041004		- norograna	LOLL	
	103	103 Hidrografia	38/230.4840/3	8968174.20388	Hidrografia	2022	
apas 88	104	104 Hidrografía	389896.305646	8975883.69878	Hidrografía	2022	Search
	105	105 Hidrografía	388634.190102	8985387.38588	Hidrografía	2022	
Muestreo_RF_2022	106	106 Hidrografía	384662.304134	8988496.79397	Hidrografía	2022	122
Muestreo_DT_2022	107	107 Hidrografía	388906.340801	8984769.90768	Hidrografía	2022	
 ✓ Multiple Sym_2022 ✓ ● Bosque 	108	108 Hidrografía	388160.342262	8983639.36311	Bosque	2022	
✓ • Deforestado	100	109 Hidrografia	390956 961430	9978216.00026	Hidroorafía	2022	
Muestreo_RF_2016	105		2007202 007044			2022	
Muestreo_DT_2016	110	110 Hidrografia	389708.697844	8977971.66465	Hidrografia	2022	
Restro_SVM_2016	111	111 Hidrografía	389876.609378	8978284.60281	Hidrografía	2022	0
· RVN_Eje	112	112 Hidrografia	385925.046037	8988467.39622	Hidrografía	2022	
✓ RVD.Eje	113	113 Hidrografía	388702.372887	8985193.51813	NULL	2022	8
🔻 🔽 🕼 Oct 23, 2022 PlanetScope Scene)	114	114 Hidrografía	388098.602179	8975090.01544	NULL	2022	1
V Footprints V ¥ Image previews V ¥ Image previews V ¥ 1 mage previews	115	115 Hidrografía	383716.125920	8988737,19745	NULL	2022	, in the second s
Oct 10, 2022 PlanetScope Scene 2	116	116 Hidrografia	390362 941730	8980185.02541	NULL	2022	
v √ ¥ Image previews	110	117 Hide and is	200615 640417	0077547.03334	AURI	2022	
V V Google Satellite	11/	ni reidrografia	389013.648417	897731785554	NULL	EULL	0 v
	118 Mostrar	118 Hidrografia todos los objetos espaciales "	389978.382752	8982128.59342	NULL	2022	Rems)
	Coordenada -9.150246,-7	6.036399 % Escala 1:2382	 Amplificado 	r 100% 🗘 Rd	tación 0.0 °	\$ ✓ Representar	@EPSG:4326
						Tall and a state of the state of the	11:02

Figura 13. Validación con imágenes satelitales Planet.

Conformation Same Conformatio Same Conformation Same Conformation Same Conformation	22	* = E 123 CID * Cat	x		* Actualizar to	odo Actualizar la selev	ccionado
3 8 6 № 0	22	CID A Cat	X				101
or CES	22			Ý	Validacion	Año	î
r Th O		22 Bosque	388854,495453	8981718.64395	Bosque	2022	
roritos 🔺 Contractor de la contractor d	23	23 Bosque	387190.381877	8986098.36928	Deforestado	2022	
Califerni Antoni Downloade	24	24 Bosque	385444.127235	8984053.42957	Deforestado	2022	
D\GIS - TELEDETECCIÓN-FOTOGR	25	25 Bosque	385973.157417	8976774.05495	Bosque	2022	
D\Trabajos papá miguel	24	DE Poreiro	205522 474052	9577/07 20121	NED EN CAMPO	3013	
ricadores espaciales	20	20 Dodgae	303363414336	diriter restau	TUNEITONITO	1014	
cio	27	27 Bosque	386548.784708	8980370.38159	Deforestado	2022	
(S20)	28	28 Bosque	388127.361723	8980242.50761	Deforestado	2022	
86	29	29 Bosque	388261.302025	8977689.00782	Bosque	2022	
	30	30 Bosque	387920.740048	8983682.91320	Deforestado	2022	
HUANUCO	21	31 Porque	202112 550744	0000001 /1072	Deforertado	2072	
Muestreo RF 2022	31	31 bosque	302113.330144	0330031/41373	Deforestado	LOLL	
Muestreo_SVM_2022	32	32 Bosque	388880.003726	8977092.14073	Bosque	2022	
Bosque	33	33 Bosque	383531.579472	8982388.29807	Bosque	2022	
Hidrografia	34	34 Bosque	388416.948215	8985921.62645	Bosque	2022	
Muestreo RF_2016	25	35 Bosque	384627 146125	8980202 64491	Rosmue	2022	
Muestreo_DT_2016		26 0	205002.000.000	0201010101000		2012	
RVV_Eje	35	30 Busque	3010371/031201	8204010.11005	eosque	2022	
RVN Eje	37	37 Bosque	386897.394072	8979618.90014	NULL	2022	
Castillo_Grande	38	38 Bosque	388914.989184	8971923.68060	NULL	2022	
Oct 23, 2022 PlanetScope Scene 3	39	39 Bosque	380520.241325	8987333.51290	NULL	2022	
Footprints ©	40	40 Bosque	381968.869578	8984260.72519	NULL	2022	
Oct 10, 2022 PlanetScope Scene ?	50	41 Paraula	2005004 152242	0077045 20555	10.77	2022	
Footprints	41	41 bosque	383394.132313	89/7045.30058	NULL	2022	
Google Satellite	42	42 Bosque	385145.982146	8986102.18011	NULL	2022	
	43	43 Bosque	379800.334440	898576588762	101111	2022	

Figura 14. Validación con imágenes satelitales Planet.

Figura 15. Clasificación en Google Earth Engine

http://www.commentelsenterse	SPSS Statistics Vis	sor						-	-	0	Х
Archivo Editar Ver Datos	Iransformar	Insertar F	<u>o</u> rmato	Analizar <u>G</u> rá	ficos <u>U</u> tili	dades	Ampliacion	es Ventana	Ayuda		
🚔 🗛 🖨 🗟 🖉	h 🛄 🖬	<u>ר מ</u>	1 I I	ä 🚣 🚽							ĺ
Resultado Registro Tablas cruzadas Tablas cruzadas Tablas cruzadas Notas Conjunto de datos - Conjunto de da	Fablas (Conjun)	T ROUND CE cruzada: toDatos1]	ELL. S Resum	en de proce	samiento	de caso	s	2			
					Caso	s					
			Váli	do	Perdi	do		Total			
			Ν	Porcentaje	N F	orcentaje	N	Porcentaje			
	Clase * V	/alidacion	147	100,0%	0	0,0%	147	100,0%			
	Recuento	0 Tab	ola cruza	da Clase*Val	idacion						
			Rosque	Validacio	n Hidroar	afia Ti	late				
	Clase	Bosque	35	1	1	0	49				
		Deforestado	16	i 3:	3	0	49				
		Hidrografía	2			46	49				
	Total		53	4	3	46	147				
				Medidas si	métricas						
				valor a	Error estándar sintótico ^a	T aproxi	mada ^b Si a	ignificación aproximada			
	Medida d	le acuerdo	Карра	,663	,052	1	1,383	,000			
	N de cas	os válidos		147							
	a. No :	se presupone	e la hipótesi	s nula.							
	b. Utili	izacion del erri	or estàndar	asimotico que	presupone l	a nipótesis	i nula.				
, <u>a</u>									IBM SPSS Statistics Processor está listo	Unicode:0	i
• • • •			a .	-					6 6 6 6 6	09:16	l
	<u>v</u> w		- 1		2 0	v	V	<u> </u>		/10/2022	ļ

Figura 16. Resultados en software SPSS

Q Metodologia_tesis - ArcMap				5	8		=	0
File Edit View Bookmarks Insert Selec	ction Geoprocessing	Customize Wind	ows Help					
	• 1:50,000							
		M . C O TO D	Ganufarancing		22222	2回回0-1		
			terreletering.	M N I I I I I I I	1 + + + + + + + + + + + + + + + + + + +	a open vy -		
Shapping • O H U D	Classification	* 1 mos_2016v1.	u	Editor• P	"A V I 41"	*1日中市×水1回		
1 4 4 7 2 E E E E E E E	× 🛯 🖻 🔒 💂 🚬	10171-01-1-	オロジロロゴ南キ	11日日1日1日1日1日1日1	⊟ 17 © 21% 2	4.0 /n /v /4 II		-
Table Of Contents 9 ×	S APPL	Table						□ × ₽ ×
Se 0 😣 🗳	A 3 6 1 7 9	🗄 • 📲 • 📲	🖓 🛛 🖑 🗙					8
	10.0	Muestreo_RF_2016						×
B Muestree RE 2016	STOL OF THE STOL	FID Shape *	CID Cat	x	Y	Validacion Año		-
	A Bar De	O Point	1 Bosque	389405.842148	8983298 38771	2016		
The start of the	arther to Blight	1 Point	2 Bosque	384374 903941	8982884 83248	2016		
	Els Dance	2 Point	3 Bosque	386293.775644	8978244.73228	2016		
	NO PLATS	3 Point	4 Bosque	381191.013813	8989151.02029	2016		
SVM 2016	2 4 2 " 5 55	4 Point	5 Bosque	384909.356525	8983499.28576	2016		
Decision Tree 2016	N 9 1 200	5 Point	6 Bosque	382025.535027	8984489.93247	2016		
Random Forest 2016	to to a st	6 Point	7 Bosque	384259.742108	8982124.22132	2016		
RF_HIDROGRAFIA_2016	Ming are	7 Point	8 Bosque	388109.121373	8982029.44099	2016		
	a a	8 Point	9 Bosque	386160.454217	8980564.70096	2016		
RF_DEFORESTADO_2016	1	9 Point	10 Bosque	382805.415881	8983773.90788	2016		
	13	10 Point	11 Bosque	386112.676997	8975967.34332	2016		
RF BOSOUE 2016		11 Point	12 Bosque	383297.590802	8987981.74524	2016		
		12 Point	13 Bosque	388262.109127	8972222.5818	2016		
10 ET SVM 2022		13 Point	14 Bosque	386206.948105	8986653.32161	2016		
C Desiring Tage 2002		14 Point	15 Bosque	387036.56111	8985238.35426	2016		
E Decision free 2022		15 Point	16 Bosque	382095.665115	8986300.22413	2016		
Kandom Forest 2022		16 Point	17 Bosque	380935.794372	8988643.72411	2016		
Proceso 2016		17 Point	18 Bosque	389104.883019	8981341.91586	2016		
Proceso 2022		18 Pont	19 Bosque	385110.771366	89/9558.56899	2016		
E 2022_RF_COMBINADO		19 Pont	20 Bosque	381261.253079	8989229.89586	2016		
2022_DT_COMBINADO		20 Point	21 Bosque	30/024,203003	09/31/5.2/6/9	2010		
2022_SVM_COMBINADO 2022_SVM_COMBINADO		21 Point	22 Bosque	303074.000091	090/191./0132	2010		
		22 Point	24 Bosque	383803 50845	9963620.3069	2016		
2016		24 Point	25 Boscue	385123 08323	R982482 01991	2016		
E 🕅 2022		25 Point	26 Bosque	387130.004861	8980680 31876	2016		
T CV 2022 RF		20 Daint	27 Rosenia	331979 0100	RORIO AN REAR	2016		Y
C CC 2022 PANDOM EOPEST+#		14 4 1	+ H = 0 00	t of 147 Selected)				(*)
TO CV 2022 DECISION TREE								
		Muestreo_RF_2016						
		a person		A Start Real Property Pro-	1009		select a template.	
. C C 2002 00044			18.0 · · · · · ·	WELL DO FRAM	150			
			P. 07	医结合 建固定 法通知。	281 7212		v	
Castillo_Grande		-					>	
Drawing	• 🕟 🚳 🗆 • A	• 🖂 🙆 Arial	~ 10	· B I U A · A ·	· <u>@</u> • • • • •			
	-				1		-76.056 -9.203 Decimal Denre	
			-				-Tubb - Acto becimin begre	044
🍯 👂 🖻 🧕 🖡	🧶 🦉 🕺	10 🕄	Q Ø 🕓				12/1 25°C Parc. nublado 🔨 🖗 🖼 🕼 🌾 ESP 🗤 12/1	10/2022

Figura 17. Manejo de la tabla de atributos en ArcGis 10.5